洛谷P3951

看到题目,很容易想到这一题是求使ax+by=c(a,b,c∈N)无非负整数解的最大c

由裴蜀定理可知方程一定有整数解(a,b互素,gcd(a,b)=1|c)

解法一:暴力枚举

看到题目我的第一想法是求出ax+by=1的解然后枚举c使x,y扩大c倍后仍无非负整数解

枚举c应该要从1到a*b……看看数据范围就知道会WA掉4个点

这个解法很傻瓜我就不再赘述了……代码略

期望得分:60

解法二:小学奥数

虽然我不想承认但真**是小学奥数!!

因为a,b,c都>0,所以方程的解最多有一个负数

不妨设y<0,则x≥0

那么对于c=ax+by,y=-1时c取最大值,c=ax-b

接下来我们来看x

事实上0≤x≤b-1

为什么呢?

首先注意到这样一个事实:线性方程ax+by=c的整数解可以表示为{x-kb,y+ka}(k∈Z)

因为当x≤b-1时,一定不存在k∈Z使得x-kb≥0且y+ka≥0

这样可能看着不是很清楚,那么我们再反证一下会更容易明白

当x≥b时,显然x-b≥0且y+a≥0(此时k=1),与假设矛盾,故不成立

这样我们就证明了0≤x小于等于号怎么≤b-1

上面我们得出c=ax-b

那么当x=b-1时c取最大值a(b-1)-b=ab-a-b

综上,当y=-1,x=b-1时c取最大值ab-a-b

有的人可能会说,上面假设的是y<0,那x<0的时候c最大值还是不是ab-a-b呢?

很简单,同理,将x=-1,y=a-1代入,c=-a+b(a-1)=ab-a-b

期望得分:100

AC代码(有必要吗……):

 #include<cstdio>
int main()
{
long long a,b;//a,b足够大时a*b会爆int
scanf("%lld%lld",&a,&b);
printf("%lld",a*b-a-b);
return ;
}

NOIP2017 D1T1 小凯的疑惑的更多相关文章

  1. NOIP2017 D1T1小凯的疑惑

    这应该是近年来最坑的第一题了. 我第一眼看到这题上来就打表,数据范围告诉我复杂度应该是log级的,然而一个小时后才发现是一个输出结论. 设较小数是a 较大数是b 写出几组可以发现一个规律就是一旦出现连 ...

  2. 【NOIP2017】小凯的疑惑

    原题: 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的价 ...

  3. NOIp D1T1 小凯的疑惑

    吐槽 果然让人很疑惑,这道题,对于我这种数学渣渣来说太不友好了,哪里想得到结论,猜也猜不到. 思路一 纯数学,见过的飞快切掉,没见过的就... 结论就是:已知$a,b$为大于$ 1 $的互质的正整数, ...

  4. loj2314 「NOIP2017」小凯的疑惑[同余最短路or数论]

    这题以前就被灌输了“打表找规律”的思想,所以一直没有好好想这道题,过了一年还不太会qwq.虽然好像确实很简单,但是还是带着感觉会被嘲讽的心态写这个题解...而且还有一个log做法不会... 法1:(一 ...

  5. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  6. 【比赛】NOIP2017 小凯的疑惑

    找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...

  7. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  8. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  9. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

随机推荐

  1. powered by Fernflower decompiler

    About Fernflower Fernflower is the first actually working analytical decompiler for Java and probabl ...

  2. jmeter的cookie跨线程传递

    测试计划需要设置成独立运行每个线程组获取cookie需要先执行才能使接下来的cookie使用正确执行 登录线程组登录,使用正则表达式提取器提取所需cookie然后使用BeanShellPostProc ...

  3. input输入框的的input事件和change事件以及change和blur事件的区别

    input输入框的 oninput事件 ,在用户输入的时候触发,只要元素值发生变化就会触发 input输入框的 onchange事件 ,要在输入框失去焦点的时候触发事件,当鼠标在其他地方点击一下才会触 ...

  4. Windows系统里Oracle 11g R2 Client(64bit)的下载与安装

    环境: windows10系统(64位) 最好先安装jre或jdk(此软件用来打开oracle自带的可视化操作界面,不装也没关系:可以安装plsql,或者直接用命令行操作) Oracle 11g 是仅 ...

  5. FTP-学习笔记(1)

    1.简单的SFTP.FTP文件上传下载 SftpTools.java package com.lfy.mian; import com.jcraft.jsch.*; import java.io.Fi ...

  6. VUE项目中使用this.$forceUpdate();解决页面v-for中修改item属性值后页面v-if不改变的问题

    VUE项目中使用this.$forceUpdate();解决页面v-for中修改item属性值后页面v-if不改变的问题:https://blog.csdn.net/jerrica/article/d ...

  7. 学习C++的意义

    1,常见的观点: 1,并不是每个应届生都有机会写操作系统和驱动程序: 2,嵌入式系统也是软家系统,只不过是软件在出厂的时候已经被烧写到硬件中了,用户没有办法修改软件而已,因此嵌入式系统也是软件系统,C ...

  8. Tarjan水题系列(1):草鉴定Grass Cownoisseur [USACO15JAN]or[luogu P3119]

    题目如下: 约翰有n块草场,编号1到n,这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草. 贝西总是从1号草场出发,最后回到1号草场.她想经过尽可能多的草场,贝 ...

  9. centos7yum安装VirtualBox

    cd 进入目录:/etc/yum.repos.d 新建一个文件virtualbox.repo, 输入如下内容: [virtualbox] name=Oracle Linux / RHEL / Cent ...

  10. Spring如何读取xml配置文件的

    我们通过一个小案例来看xml解析过程. 1. 导包 <dependencies> <!-- xml解析工具 --> <dependency> <groupId ...