circuits

Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 793    Accepted Submission(s): 253

Problem Description
 
 Given a map of N * M (2 <= N, M <= 12) , '.' means empty, '*'
means walls. You need to build K circuits and no circuits could be
nested in another. A circuit is a route connecting adjacent cells in a
cell sequence, and also connect the first cell and the last cell. Each
cell should be exactly in one circuit. How many ways do we have?

 
Input
  The first line of input has an integer T, number of cases.
  For each case:
  The first line has three integers N M K, as described above.
  Then the following N lines each has M characters, ‘.’ or ‘*’.
 
Output
  For each case output one lines.
  Each line is the answer % 1000000007 to the case.
 
Sample Input
2
4 4 1
**..
....
....
....
 
4 4 1
....
....
....
....
 
Sample Output
2
6
#include <bits/stdc++.h>
using namespace std ;
const int N = ;
const int M = ;
const int MAXN = ;
const int mod = 1e9+;
int n , m , K ;
int maze[N][N] ;
int code[N] ;
int ch[N] , num ;
int ex , ey ; struct HASHMAP {
int head[M] , next[MAXN] , tot ;
long long st[MAXN] , f[MAXN] ;
void init() {
memset( head , - , sizeof head ) ;
tot = ;
}
void push( long long state , long long ans ) {
int u = state % M ;
for( int i = head[u] ; ~i ; i = next[i] ) {
if( st[i] == state ) {
f[i] += ans ;
f[i] %= mod ;
return ;
}
}
st[tot] = state ;
f[tot] = ans % mod ;
next[tot] = head[u] ;
head[u] = tot++ ;
}
} mp[] ; void decode ( int* code , int m , long long st ) {
num = st & ;
st >>= ;
for( int i = m ; i >= ; --i ) {
code[i] = st& ;
st >>= ;
}
} long long encode( int *code , int m ) {
int cnt = ;
long long st = ;
memset( ch , - , sizeof ch) ;
ch[] = ;
for( int i = ; i <= m ; ++i ) {
if( ch[code[i]] == - ) ch[ code[i] ] = cnt++ ;
code[i] = ch[ code[i] ] ;
st <<= ;
st |= code[i] ;
}
st <<= ;
st |= num ;
return st ;
} void shift( int *code , int m ) {
for( int i = m ; i > ; --i ) {
code[i] = code[i-] ;
} code[] = ;
} void dpblank( int i , int j , int cur ) {
int left , up ;
for( int k = ; k < mp[cur].tot ; ++k ) {
decode( code , m , mp[cur].st[k] );
left = code[j-] ;
up = code[j] ;
if( left && up ) {
if( left == up ) {
if( num >= K ) continue ;
int c = ;
for( int y = ; y < j - ; ++y )
if( code[y] ) c++ ;
if( c& ) continue ;
num++ ;
code[j-] = code[j] = ;
if( j == m ) shift( code , m ) ;
mp[cur^].push( encode(code,m),mp[cur].f[k] );
}else {
code[j-] = code[j] = ;
for( int t = ; t <= m ; ++t ) {
if( code[t] == up )
code[t] = left ;
}
if( j == m ) shift( code,m );
mp[cur^].push(encode(code,m),mp[cur].f[k]) ;
}
}
else if( ( left && ( !up ) ) || ( up && (!left ) ) ) {
int t ;
if( left ) t = left ;
else t = up ;
if( maze[i][j+] ) {
code[j-] = ;
code[j] = t ;
mp[cur^].push( encode(code,m) , mp[cur].f[k] ) ;
}
if( maze[i+][j] ) {
code[j-] = t ;
code[j] = ;
if( j == m ) shift( code , m );
mp[cur^].push(encode(code,m),mp[cur].f[k]); }
}
else {
if( maze[i][j+] && maze[i+][j] ) {
code[j-] = code[j] = ;
mp[cur^].push( encode(code,m),mp[cur].f[k]);
}
}
}
}
void dpblock( int i , int j , int cur ) {
for( int k = ; k < mp[cur].tot ; ++k ) {
decode( code , m , mp[cur].st[k] );
code[j-] = code[j] = ;
if( j == m ) shift( code , m );
mp[cur^].push( encode(code,m) , mp[cur].f[k] );
}
} void Solve() {
int v = ;
mp[v].init();
mp[v].push(,);
for( int i = ; i <= n ; ++i ) {
for( int j = ; j <= m ; ++j ) {
mp[v^].init() ;
if( maze[i][j] ) dpblank( i , j , v ) ;
else dpblock( i , j , v );
v ^= ;
}
}
long long ans = ;
for( int i = ; i < mp[v].tot ; ++i ) {
if( mp[v].st[i] == K ) ans = ( ans + mp[v].f[i] ) % mod ;
}
cout << ans << endl ;
}
string s ; int main () {
// freopen("in.txt","r",stdin);
ios::sync_with_stdio();
int _ ; cin >> _ ;
while( _-- ) {
cin >> n >> m >> K ;
ex = ;
memset( maze , , sizeof maze ) ;
for( int i = ; i <= n ; ++i ) {
cin >> s ;
for( int j = ; j < m ; ++j ) {
if( s[j] == '.' ) {
ex = i , ey = j + ;
maze[i][j+] = ;
}
}
}
if( !ex ) { cout << '' << endl ; continue ; }
else Solve();
}
return ;
}

HDU 4285 circuits( 插头dp , k回路 )的更多相关文章

  1. hdu1693插头dp(多回路)

    题意:在n*m的矩阵中,有些格子有树,没有树的格子不能到达,找一条或多条回路,吃全然部的树,求有多少中方法. 这题是插头dp,刚刚学习,不是非常熟悉,研究了好几天才明确插头dp的方法,他们老是讲一些什 ...

  2. 【插头dp】 hdu4285 找bug

    打模板的经验: 1.变量名取一样,换行也一样,不要宏定义 2.大小写,少写,大括号 #include<algorithm> #include<iostream> #includ ...

  3. Ural 1519 Formula 1 插头DP

    这是一道经典的插头DP单回路模板题. 用最小表示法来记录连通性,由于二进制的速度,考虑使用8进制. 1.当同时存在左.上插头的时候,需要判断两插头所在连通块是否相同,若相同,只能在最后一个非障碍点相连 ...

  4. HDU 4113 Construct the Great Wall(插头dp)

    好久没做插头dp的样子,一开始以为这题是插头,状压,插头,状压,插头,状压,插头,状压,无限对又错. 昨天看到的这题. 百度之后发现没有人发题解,hust也没,hdu也没discuss...在acm- ...

  5. HDU 1693 Eat the Trees(插头DP,入门题)

    Problem Description Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...

  6. HDU 1693 Eat the Trees(插头DP、棋盘哈密顿回路数)+ URAL 1519 Formula 1(插头DP、棋盘哈密顿单回路数)

    插头DP基础题的样子...输入N,M<=11,以及N*M的01矩阵,0(1)表示有(无)障碍物.输出哈密顿回路(可以多回路)方案数... 看了个ppt,画了下图...感觉还是挺有效的... 参考 ...

  7. HDU 1693 Eat the Trees(插头DP)

    题目链接 USACO 第6章,第一题是一个插头DP,无奈啊.从头看起,看了好久的陈丹琦的论文,表示木看懂... 大体知道思路之后,还是无法实现代码.. 此题是插头DP最最简单的一个,在一个n*m的棋盘 ...

  8. HDU 4064 Carcassonne(插头DP)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4064 Problem Description Carcassonne is a tile-based ...

  9. 【HDU】1693:Eat the Trees【插头DP】

    Eat the Trees Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

随机推荐

  1. man da'te

    DATE(1)                 用户命令                      DATE(1) 名称  日期-打印或设置系统日期和时间  简介   date [OPTION]... ...

  2. 【GDOI2016模拟3.10】习用之语

    前言 这道题看上去很水,结果我在比赛上浪费了N多时间在上面,但还是没AC.比赛结束后发现:实际上这道题还是是大水. 题目 分析 设字符串c1c2c3c4,其中c1.c2.c3.c4={'0'~'9', ...

  3. __new__与__init__的区别

    __new__  : 控制对象的实例化过程 , 在__init__方法之前调用 __init__ : 对象实例化对象进行属性设置 class User: def __new__(cls, *args, ...

  4. php 客户端调用elasticsearch接口

    1.php调用elasticsearch接口[参考资料:https://www.cnblogs.com/php0916/articles/6587340.html] /data/www/syhuo.n ...

  5. height设置百分比的条件

    很多时候我们在给height设置百分比的时候不起作用, 这时候就要来谈谈什么情况下才起作用了 1)所有父级元素必须有高度: 2)必须是块级元素,行内元素不起作用: 3)ie9 以下 使用 positi ...

  6. 基于python实现自动化办公学习笔记一

    1.CSV(1)写csv文件 import csv def writecsv(path,data): with open(path, "w") as f: writer = csv ...

  7. Spring_Boot 简单例子

    第一步创建项目: 创建项目地址:https://start.spring.io/ 接下来就下载到本地了 跟着加压 接着用idea打开:等待资源下载完成 我写了个简单的:增删改查 项目结构: dao层: ...

  8. ListView 九宫格布局实现

    1.效果图 2.数据 SettingData.json { "data": [{ "icon":"setting", "title ...

  9. tool 'xcodebuild' requires Xcode, but active developer directory '/Library/Developer/CommandLineTools' is a command line tools instance

    在执行自动化打包的时候报错,检查发现是Xcode的路径被改了 标记3的地方原来默认是没有内容的,点击它,然后会自动弹出一个选项,就是xcode的版本. 修改后,在命令行输入xcodebuild命令测试 ...

  10. python实现格式化输出9*9乘法表

    # python 9*9 乘法表 for i in range(1,10): for j in range(1,i+1): print("%s*%s=%s"%(i,j,i*j),e ...