代码

from numpy.random import RandomState #加载RandomState用于创建随机种子
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn import decomposition n_row, n_col = 2, 3 #设置图像展示时的排列情况
n_components = n_row * n_col #
image_shape = (64, 64) #设置人脸数据图片的大小 dataset = fetch_olivetti_faces(shuffle=True, random_state=RandomState(0)) #array 二维
#print(dataset)
faces = dataset.data #array 一维
#print(faces) def plot_gallery(title, images, n_col=n_col, n_row=n_row):
plt.figure(figsize=(2. * n_col, 2.26 * n_row)) #指定图片大小
plt.suptitle(title, size=16) #设置标题和字号大小 for i, comp in enumerate(images):
plt.subplot(n_row, n_col, i + 1)#选择画制的子图
vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,
interpolation='nearest', vmin=-vmax, vmax=vmax)#对数值归一化,并以灰度图形显示
plt.xticks(())
plt.yticks(())#去除子图坐标轴标签
plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 00.04, 0.) #设置子图位置和间隔调整 plot_gallery("First centered Olivetti faces", faces[:n_components]) estimators = [
('Eigenfaces - PCA using randomized SVD',
decomposition.PCA(n_components=6, whiten=True)),
('Non-negative components - NMF',
decomposition.NMF(n_components=6, init='nndsvda', tol=5e-3))
] for name, estimator in estimators:
#print(estimator)
print("Extracting the top %d %s..."% (n_components, name))
print(faces.shape) #输出图片大小 400,4096
estimator.fit(faces) #调用算法提取特征
components_ = estimator.components_ #获取提取的特征,一个二维列表
#print(components_)
plot_gallery(name, components_[:n_components]) #按照固定格式进行排列 plt.show()

效果图:

2019-07-31【机器学习】无监督学习之降维NMF算法 (人脸特征提取)的更多相关文章

  1. 2019-07-31【机器学习】无监督学习之降维PCA算法实例 (鸢尾花)

    样本 代码: import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets i ...

  2. agentzh 的 Nginx 教程(版本 2019.07.31)

    agentzh 的 Nginx 教程(版本 2019.07.31) agentzh 的 Nginx 教程(版本 2019.07.31) https://openresty.org/download/a ...

  3. <机器学习>无监督学习算法总结

    本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方 ...

  4. 无监督学习——K-均值聚类算法对未标注数据分组

    无监督学习 和监督学习不同的是,在无监督学习中数据并没有标签(分类).无监督学习需要通过算法找到这些数据内在的规律,将他们分类.(如下图中的数据,并没有标签,大概可以看出数据集可以分为三类,它就是一个 ...

  5. 2019-07-25【机器学习】无监督学习之聚类 K-Means算法实例 (1999年中国居民消费城市分类)

    样本 北京,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64天津,2459.77,495.47,697.33,302.87,284.1 ...

  6. 2019-07-31【机器学习】无监督学习之聚类 K-Means算法实例 (图像分割)

    样本: 代码: import numpy as np import PIL.Image as image from sklearn.cluster import KMeans def loadData ...

  7. 斯坦福机器学习视频笔记 Week8 无监督学习:聚类与数据降维 Clusting & Dimensionality Reduction

    监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analy ...

  8. Python 机器学习实战 —— 无监督学习(上)

    前言 在上篇<Python 机器学习实战 -- 监督学习>介绍了 支持向量机.k近邻.朴素贝叶斯分类 .决策树.决策树集成等多种模型,这篇文章将为大家介绍一下无监督学习的使用.无监督学习顾 ...

  9. Python 机器学习实战 —— 无监督学习(下)

    前言 在上篇< Python 机器学习实战 -- 无监督学习(上)>介绍了数据集变换中最常见的 PCA 主成分分析.NMF 非负矩阵分解等无监督模型,举例说明使用使用非监督模型对多维度特征 ...

随机推荐

  1. Django-jwt token生成源码分析

    一. 认证的发展历程简介 这里真的很简单的提一下认证的发展历程.以前大都是采用cookie.session的形式来进行客户端的认证,带来的结果就是在数据库上大量存储session导致数据库压力增大,大 ...

  2. P5020 货币系统 题解

    原题链接 简要题意: 求一个长度最小的货币系统与给出的货币系统等价.求这个货币系统的长度.等价的定义详见题目,不再赘述. 本文可能用到一些集合论,请放心食用. 算法一 \(n=2\) 时,只需判断两个 ...

  3. CF1324B Yet Another Palindrome Problem 题解

    原题链接 CF 127个测试点,好评 简要题意: 多组数据,问数组中是否有长度 \(\geq 3\) 的回文子序列. 我们需要找到本质. 题目不让我们求这个长度,只让我们判断,这是为什么呢? 如果答案 ...

  4. 一文总结数据科学家常用的Python库(下)

    用于建模的Python库 我们已经到达了本文最受期待的部分 - 构建模型!这就是我们大多数人首先进入数据科学领域的原因,不是吗? 让我们通过这三个Python库探索模型构建. Scikit-learn ...

  5. FastText的内部机制

    文章来源:https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3 译者 | Revolver fasttext是一个被用于 ...

  6. [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林

    [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来 ...

  7. 针对Kafka的centos系统参数优化

    TCP网络优化 sudo vim /etc/sysctl.conf vm.max_map_count=655360net.core.rmem_default=262144net.core.rmem_m ...

  8. Python3安装Crypto加密包

    Python3安装Crypto加密包 下载链接 加密包地址 步骤 下载加密包,解压加密包到Python安装目录下Lib\site-packages目录中,尝试在Pycharm中导入 from Cryp ...

  9. Java构造方法的姿势与易错点

    <Java基础复习>-类与对象&初始化 关于类和对象的基本理念,就不再赘述(如果你学习过还忘了,就是一种特殊的本领了),没有学习过的可以去搜索一下OOP或者类和对象,百科的知识就已 ...

  10. 使用git上传代码到GitHub

    1.安装git git在Windows上安装很简单,在官网下载git的安装包后打开,然后一路next就好.安装完git之后,在文件夹中右击鼠标,出现Git Bash Here就表示安装完成了. 选择G ...