tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)
参数:
logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes
labels:实际的标签,大小同上

执行流程


第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,
对于单样本而言,输出就是一个num_classes大小的向量([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率) 第二步是softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:

\[H{y}'(y)=-\sum_{i}{y_i}'log(y_i)
\]

其中\({y_i}'\)指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)

就是softmax的输出向量[Y1,Y2,Y3...]中,第i个元素的值,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss

注意!!!

函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,
如果求loss,则要做一步tf.reduce_mean操作,对向量求均值!

sample

import tensorflow as tf  

#our NN's output
logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
#step1:do softmax
y=tf.nn.softmax(logits)
#true label
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
#step2:do cross_entropy
cross_entropy = -tf.reduce_sum(y_*tf.math.log(y))
#do cross_entropy just one step
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits, y_))#dont forget tf.reduce_sum()!! with tf.Session() as sess:
softmax=sess.run(y)
c_e = sess.run(cross_entropy)
c_e2 = sess.run(cross_entropy2)
print("step1:softmax result=")
print(softmax)
print("step2:cross_entropy result=")
print(c_e)
print("Function(softmax_cross_entropy_with_logits) result=")
print(c_e2)

output

step1:softmax result=
[[ 0.09003057 0.24472848 0.66524094]
[ 0.09003057 0.24472848 0.66524094]
[ 0.09003057 0.24472848 0.66524094]]
step2:cross_entropy result=
1.22282
Function(softmax_cross_entropy_with_logits) result=
1.2228

tf.nn.softmax_cross_entropy_with_logits 分类的更多相关文章

  1. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  2. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...

  3. 关于 tf.nn.softmax_cross_entropy_with_logits 及 tf.clip_by_value

    In order to train our model, we need to define what it means for the model to be good. Well, actuall ...

  4. [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...

  5. tf.nn.softmax_cross_entropy_with_logits的用法

    http://blog.csdn.net/mao_xiao_feng/article/details/53382790 计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_e ...

  6. tf.nn.softmax & tf.nn.reduce_sum & tf.nn.softmax_cross_entropy_with_logits

    tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j ...

  7. tf.nn.softmax_cross_entropy_with_logits()函数的使用方法

    import tensorflow as tf labels = [[0.2,0.3,0.5], [0.1,0.6,0.3]]logits = [[2,0.5,1], [0.1,1,3]] a=tf. ...

  8. 1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))

    1.求loss: tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)) 第一个参数log ...

  9. tf.nn.sigmoid_cross_entropy_with_logits 分类

    tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,,labels=None,logits=None,name=None) logits和la ...

随机推荐

  1. python-参考书

    真的是找了很多的参考书,但是看懂,上手用的就一本比较好的<编程小白的第1本python入门书>非常的好. 属于那种一看就懂,能说明白的.别的,要么就是翻译的外文的,有点难以理解,要么就是中 ...

  2. 【原创】(六)Linux进程调度-实时调度器

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

  3. abp(net core)+easyui+efcore实现仓储管理系统——入库管理之六(四十二)

    abp(net core)+easyui+efcore实现仓储管理系统目录 abp(net core)+easyui+efcore实现仓储管理系统——ABP总体介绍(一) abp(net core)+ ...

  4. 题解 P5835 【 USACO19DEC Meetings S】

    前言 这道题目是道好题,想通了之后就可以把轻松这道题做出来. 正文 结论 先把一个结论写出来. 无论所有奶牛怎么走,它们的体重从左往右组成的序列是不会发生改变的. 这个结论简单地说明一下. 首先我们可 ...

  5. JSP+Servlet+C3P0+Mysql实现的azhuo商城

    项目简介 项目来源于:https://gitee.com/xuyizhuo/shopping 原仓库中缺失jar包及sql文件异常,现将修改过的源码上传到百度网盘上. 链接:https://pan.b ...

  6. 数据源管理 | 主从库动态路由,AOP模式读写分离

    本文源码:GitHub·点这里 || GitEE·点这里 一.多数据源应用 1.基础描述 在相对复杂的应用服务中,配置多个数据源是常见现象,例如常见的:配置主从数据库用来写数据,再配置一个从库读数据, ...

  7. 浅尝Go语言GC

    大家好,我是小栈君,因为个人和工作的缘故,所以拖更了一点时间,但是关于拖更的内容小栈君会在后续的时间中补回来,还希望大家继续支持和关注小栈君.当然,在国内疫情稍微减缓的情况下,小栈君在这里也多说两句, ...

  8. LightOJ - 1341 Aladdin and the Flying Carpet 唯一分解定理LightOJ 1220Mysterious Bacteria

    题意: ttt 组数据,第一个给定飞毯的面积为 sss,第二个是毯子的最短的边的长度大于等于这个数,毯子是矩形但不是正方形. 思路: 求出 sss 的所有因子,因为不可能是矩形,所以可以除以 222, ...

  9. jdk下httpserver源码解析

    在写这篇博客之前我查了很久发现全网都没有一篇写httpserver源码解析的 所以今天就由我来为大家解析一下httpserver的源码.(这里我会去掉其中的https部分的源码,只讲http部分,对h ...

  10. Codeforces 1329C - Drazil Likes Heap(堆+贪心)

    题目链接 题意 给出一个高度为 h 的大根堆, 要求弹出其中若干个数后高度变为 g, 并且前后大根堆都是满二叉树. 问新的大根堆所有数之和的最小值, 并要给出一种弹出数的操作序列(节点序号). h, ...