我们从最简单的问题开始:

给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.

要求:

f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1

问题的另一种描述就是用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值。

解法一:

很直观的一种解法,那就是从数列的开头,将窗放上去,然后找到这最开始的k个数的最大值,然后窗最后移一个单元,继续找到k个数中的最大值。

这种方法每求一个f(i),都要进行k-1次的比较,复杂度为O(N*k)。

那么有没有更快一点的算法呢?

解法二:

我们知道,上一种算法有一个地方是重复比较了,就是在找当前的f(i)的时候,i的前面k-1个数其它在算f(i-1)的时候我们就比较过了。那么我们能不能保存上一次的结果呢?当然主要是i的前k-1个数中的最大值了。答案是可以,这就要用到单调递减队列。

单调递减队列是这么一个队列,它的头元素一直是队列当中的最大值,而且队列中的值是按照递减的顺序排列的。我们可以从队列的末尾插入一个元素,可以从队列的两端删除元素。

1.首先看插入元素:为了保证队列的递减性,我们在插入元素v的时候,要将队尾的元素和v比较,如果队尾的元素不大于v,则删除队尾的元素,然后继续将新的队尾的元素与v比较,直到队尾的元素大于v,这个时候我们才将v插入到队尾。

2.队尾的删除刚刚已经说了,那么队首的元素什么时候删除呢?由于我们只需要保存i的前k-1个元素中的最大值,所以当队首的元素的索引或下标小于i-k+1的时候,就说明队首的元素对于求f(i)已经没有意义了,因为它已经不在窗里面了。所以当index[队首元素]<i-k+1时,将队首元素删除。

(补充:队列中的元素主要包括了两个性质:大小--决定它是否影响f[i]的求值,时效性(删除队头使用)--数组下标决定它是否已经离开了滑动窗口,不在影响f[i]了,删除队尾时,是新入队的时效性>已在队中的元素了,如果队尾的取值不如新入队的元素的值优的话,那么就可以删除队尾了。)

从上面的介绍当中,我们知道,单调队列与队列唯一的不同就在于它不仅要保存元素的值,而且要保存元素的索引(当然在实际应用中我们可以只需要保存索引,而通过索引间接找到当前索引的值)。

为了让读者更明白一点,我举个简单的例子。

假设数列为:8,7,12,5,16,9,17,2,4,6.N=10,k=3.

那么我们构造一个长度为3的单调递减队列:

首先,那8和它的索引0放入队列中,我们用(8,0)表示,每一步插入元素时队列中的元素如下:

0:插入8,队列为:(8,0)

1:插入7,队列为:(8,0),(7,1)

2:插入12,队列为:(12,2)

3:插入5,队列为:(12,2),(5,3)

4:插入16,队列为:(16,4)

5:插入9,队列为:(16,4),(9,5)

。。。。依此类推

那么f(i)就是第i步时队列当中的首元素:8,8,12,12,16,16,。。。

例题:POJ 2823 滑动窗口

Sliding Window

Time Limit: 12000MS   Memory Limit: 65536K
Total Submissions: 54158   Accepted: 15543
Case Time Limit: 5000MS

Description

An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example: 
The array is [1 3 -1 -3 5 3 6 7], and k is 3.

Window position Minimum value Maximum value
[1  3  -1] -3  5  3  6  7  -1 3
 1 [3  -1  -3] 5  3  6  7  -3 3
 1  3 [-1  -3  5] 3  6  7  -3 5
 1  3  -1 [-3  5  3] 6  7  -3 5
 1  3  -1  -3 [5  3  6] 7  3 6
 1  3  -1  -3  5 [3  6  7] 3 7

Your task is to determine the maximum and minimum values in the sliding window at each position.

Input

The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line. 

Output

There are two lines in the output. The
first line gives the minimum values in the window at each position, from
left to right, respectively. The second line gives the maximum values. 

Sample Input

8 3
1 3 -1 -3 5 3 6 7

Sample Output

-1 -3 -3 -3 3 3
3 3 5 5 6 7 转载自https://www.cnblogs.com/c1299401227/p/5774133.html;
#include<iostream>
#include<stdio.h>
#include<cstring>
#define N 1000050
#define LL long long
using namespace std;
LL q[N];//记录的是单调队列中元素在a数组中的下标
int n,k,a[N],I[N];
void getmax()//求窗口内最大值,单调递减队列,首地址所在的元素就是最大值
{
int head=,tail=;//head和tail分别是队列头指针和尾指针
for(int i=;i<k;i++)//现在1到k-1的优先队列先计算出来
{
while(head<=tail&&a[q[tail]]<=a[i])
tail--; q[++tail]=i;
}
for(int i=k;i<=n;i++)//计算k到n的优先队列
{
while(head<=tail&&a[q[tail]]<=a[i])
tail--;
q[++tail]=i; while(q[head]<=i-k)
head++; //如果这个数不在当前区间内那么先不取这个数,再向当前区间选
printf("%d ",a[q[head]]);
}
}
void getmin()//求窗口内最小值,单调递增队列,首地址所在的元素就是最小值
{
int head=,tail=;
for(int i=;i<k;i++)//现在1到k-1的优先队列先计算出来
{
while(head<=tail&&a[q[tail]]>=a[i])
tail--; q[++tail]=i;
}
for(int i=k;i<=n;i++)
{
while(head<=tail&&a[q[tail]]>=a[i])
tail--;
q[++tail]=i; while(q[head]<=i-k)
head++; //如果这个数不在当前区间内那么先不取这个数,再向当前区间选
printf("%d ",a[q[head]]);
}
} int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&k)!=EOF&&n)
{
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
getmin();
printf("\n");
getmax();
printf("\n");
}
return ;
}

POJ 2823 滑动窗口 单调队列模板的更多相关文章

  1. POJ 2823 滑动窗口 单调队列

    https://vjudge.net/problem/POJ-2823 中文:https://loj.ac/problem/10175 题目 给一个长度为 $N$ 的数组,一个长为 $K$ 的滑动窗体 ...

  2. Acwing 154 滑动窗口(单调队列)经典模板

    给定一个大小为n≤106n≤106的数组. 有一个大小为k的滑动窗口,它从数组的最左边移动到最右边. 您只能在窗口中看到k个数字. 每次滑动窗口向右移动一个位置. 以下是一个例子: 该数组为[1 3 ...

  3. POJ 2823 Sliding Window + 单调队列

    一.概念介绍 1. 双端队列 双端队列是一种线性表,是一种特殊的队列,遵守先进先出的原则.双端队列支持以下4种操作: (1)   从队首删除 (2)   从队尾删除 (3)   从队尾插入 (4)   ...

  4. poj 2823 Sliding Window (单调队列入门)

    /***************************************************************** 题目: Sliding Window(poj 2823) 链接: ...

  5. luoguP1886 滑动窗口 [单调队列]

    题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. 例如: The array i ...

  6. [POJ2823]Sliding Window 滑动窗口(单调队列)

    题意 刚学单调队列的时候做过 现在重新做一次 一个很经典的题目 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗 ...

  7. [洛谷P1886]滑动窗口 (单调队列)(线段树)

    ---恢复内容开始--- 这是很好的一道题 题目描述: 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口. 现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的 ...

  8. [Luogu P1886]滑动窗口--单调队列入门

    题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. 例如: The array i ...

  9. POJ 2823 (滑动窗口)

    这道题最容易想到的是用朴素的做法,即 每滑动一次,就遍历一次窗口找出最大最小值,这样时间复杂度为O(n*k),由于题目数据比较大,这种做法肯定是超时的. 另外,根据书上的讲解,还可以采用优先队列来求解 ...

随机推荐

  1. spring demo

    参考: https://www.tutorialspoint.com/spring/spring_applicationcontext_container.htm

  2. python爬虫(五) ProxyHandler处理器

    ProxyHandler处理器 一.如果我们在一段时间内用某个ip地址访问了一个网站次数过多,网站就检测到不正常,就会禁止这个ip地址的访问.所以我们可以设置一些代理服务器,每段时间换个代理,就算ip ...

  3. FF获6亿美元投资九城或许比贾跃亭更着急

    互联网企业第九城市(以下简称"九城")确认,已透过旗下子公司与总部位于美国加州的法拉第未来公司签定协议,双方共同建立合资公司,在中国制造.营销及运营电动汽车.根据合资公司协议条款, ...

  4. Entity Framework Migrations 数据迁移

    在使用Entity Framework 过程中,经常会遇到需要变更model 的状况,此时可以使用Migrations ,将每次变更记录以便后续更换机器或是运行在生产环境,持久层可保持一致. 在Pac ...

  5. Java小菜鸟的一些经历

    写在前面 自接触编程以来,从最初看到hello world显示成功时的激动,到现在看到代码大片报错时的无奈, 虽然只有短短一年左右的时间,但感觉自己经历颇多,于是,有了把自己的经历与经验分享给他人的想 ...

  6. autoit 《FAQ 大全》

    常见问题:  Q1 如何调试脚本? MsgBox(0,"测试",$var) ConsoleWrite("var=" & $var & @CRLF ...

  7. 怎么样运行jar

    一.制作jar文件 在制作.jar 文件之前你必须先编译好你的.java文件.假设我们的文件目录是c:javamyJavahelloHello.java 现在假设Hello.java的文件内容为: / ...

  8. 学习redis

    https://blog.csdn.net/xiaoyiyz/article/details/60613165 https://bbs.csdn.net/topics/392277304 https: ...

  9. 键盘类型UIKeyboardType

    UITextField.UITextView等能够调出系统键盘的控件,通过下面这个属性可以控制弹出键盘的样式: self.priceTextField.keyboardType = UIKeyboar ...

  10. Melodic 使用URDF创建简单的机器人模型

    本人Linux版本:Ubuntu 18.04LTS ROS版本:Melodic URDF代码 <?xml version="1.0" ?> <robot name ...