笔记-python-standard library-8.3.collections

1.      collections简介

Source code: Lib/collections/__init__.py


This module implements specialized container datatypes providing alternatives to Python’s general purpose built-in containers, dict, list, set, and tuple.

实现了一些特殊的容器类。

namedtuple()

factory function for creating tuple subclasses with named fields

deque

list-like container with fast appends and pops on either end

ChainMap

dict-like class for creating a single view of multiple mappings

Counter

dict subclass for counting hashable objects

OrderedDict

dict subclass that remembers the order entries were added

defaultdict

dict subclass that calls a factory function to supply missing values

UserDict

wrapper around dictionary objects for easier dict subclassing

UserList

wrapper around list objects for easier list subclassing

UserString

wrapper around string objects for easier string subclassing

1.1.    namedtuple

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They can be used wherever regular tuples are used, and they add the ability to access fields by name instead of position index.

collections.namedtuple(typename, field_names, *, rename=False, defaults=None, module=None)

它主要用于增加可读性,可以通过属性来引用元素。

ct = collections.namedtuple('point', ['x', 'y', 'z'])
p1 = ct(1,2,3)
tu = ('www','www',6)
p2 = ct._make(tu)
p3 = ct(*tu)
pr_type(p1)
pr_type(p2)
pr_type(p3)

pr_type(p1.x)

创建的ct对象是tuple的一种子类:

print(isinstance(p1, ct))
print(issubclass(ct, tuple))

True

True

1.2.   
deque

class collections.deque([iterable[, maxlen]])

Deques are a generalization of stacks and
queues (the name is pronounced “deck” and is short for “double-ended queue”).

Deques support thread-safe, memory
efficient appends and pops from either side of the deque with approximately the
same O(1) performance in either direction.

它支持线程安全,内存高效的添加删除,无论从哪一端操作,都近似于O(1)操作。

Though list objects support
similar operations, they are optimized for fast fixed-length operations and
incur O(n) memory movement costs
for pop(0) and insert(0, v) operations which change
both the size and position of the underlying data representation.

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

If maxlen is not specified or is None,
deques may grow to an arbitrary length. Otherwise, the deque is bounded to the
specified maximum length. Once a bounded length deque is full, when new items
are added, a corresponding number of items are discarded from the opposite end.
Bounded length deques provide functionality similar to the tail filter in Unix.
They are also useful for tracking transactions and other pools of data where only
the most recent activity is of interest.

如果不指定maxlen参数,dqueues不限长度;反之则有长度限制;

如果存在队列已满,插入新元素意味着从另一端丢弃一个元素。

Deque objects support the following
methods:

append(x)

Add x to the right side of the deque.

appendleft(x)

Add x to the left side of the deque.

clear()

Remove all elements from the deque leaving
it with length 0.

copy()

Create a shallow copy of the deque.

count(x)

Count the number of deque elements equal to
x.

New in version 3.2.

extend(iterable)

Extend the right side of the deque by
appending elements from the iterable argument.

extendleft(iterable)

Extend the left side of the deque by
appending elements from iterable. Note, the series of left appends results in
reversing the order of elements in the iterable argument.

index(x[, start[, stop]])

Return the position of x in the deque (at
or after index start and before index stop). Returns the first match or raises
ValueError if not found.

insert(i, x)

Insert x into the deque at position i.

If the insertion would cause a bounded
deque to grow beyond maxlen, an IndexError is raised.

pop()

Remove and return an element from the right
side of the deque. If no elements are present, raises an IndexError.

popleft()

Remove and return an element from the left
side of the deque. If no elements are present, raises an IndexError.

remove(value)

Remove the first occurrence of value. If
not found, raises a ValueError.

reverse()

Reverse the elements of the deque in-place
and then return None.

rotate(n=1) 循环输出

Rotate the deque n steps to the right. If n
is negative, rotate to the left.

When the deque is not empty, rotating one
step to the right is equivalent to d.appendleft(d.pop()), and rotating one step
to the left is equivalent to d.append(d.popleft()).

Deque objects also provide one read-only
attribute:

maxlen

Maximum size of a deque or None if
unbounded.

1.3.   
ChainMap objects

class collections.ChainMap(*maps)

它是字典的组合,提供的是对字典更高一层的封装/组合。

ChainMap({'Kotlin': 90, 'Python': 86},
{'Go': 93, 'Python': 92}, {'Swift': 89, 'Go': 87})

当在其中引用一个元素时,总是以第一个找到的元素为准。

# chainmap
from collections import ChainMap
# 定义3个dict对象
a = {'Kotlin': 90, 'Python': 86}
b = {'Go': 93, 'Python': 92}
c = {'Swift': 89, 'Go': 87}
# 将3个dict对象链在一起,就像变成了一个大的dict
cm = ChainMap(a, b , c)
print(cm) #
# 获取Kotlin对应的value
print(cm['Kotlin']) # 90
#
获取Python对应的value
print(cm['Python']) # 86
#
获取Go对应的value
print(cm['Go']) # 93

a['Python'] = 45
print(cm['Python']) # 45

pr_type(cm.maps)

属性:

maps:当前类中存在的字典的列表;

new_child(m=None):

以指定的m为首,后序添加cm所拥有的dict

cm = ChainMap(a,b,c)

cm1 = cm.new_child(m={'a':'234','j':23421})
print(cm1) # ChainMap(m,a,b,c)

parents:

等效于ChainMap(*cm1.maps[1:])

cm2 = cm1.parents
print(cm2)

1.4.   
Counter object

class collections.Counter([iterable-or-mapping])

类的主要作用就是字面意思,提供计数功能。

>>>
# Tally occurrences of words in a
list

>>>
cnt = Counter()

>>>
for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:

...     cnt[word] += 1

>>>
cnt

Counter({'blue':
3, 'red': 2, 'green': 1})

import re
words = re.findall(r'\w+', open('danci.txt',encoding='utf-8').read().lower())
print(len(words))
res = collections.Counter(words).most_common(10)
print(res)

c = Counter()                           # a new,
empty counter
pr_type(c)
c = Counter('gallahad')                 # a new counter from
an iterable
pr_type(c)
c = Counter({'red': 4, 'blue': 2})      # a new counter from
a mapping
pr_type(c)
c = Counter(cats=4, dogs=8)             # a new
counter from keyword args
pr_type(c)

输出:

Counter() <class 'collections.Counter'>

Counter({'a': 3, 'l':
2, 'g': 1, 'h': 1, 'd': 1}) <class 'collections.Counter'>

Counter({'red': 4,
'blue': 2}) <class 'collections.Counter'>

Counter({'dogs': 8,
'cats': 4}) <class 'collections.Counter'>

引用与删除:

引用不存在的元素时会返回0而不是抛出KeyError异常。

Counter objects have a dictionary interface
except that they return a zero count for missing items instead of raising
KeyError:

>>>
c = Counter(['eggs', 'ham'])

>>>
c['bacon']                              # count of a missing element is zero

0

要删除一个元素需要使用del

Setting a count to zero does not remove an
element from a counter. Use del to remove it entirely:

>>>
c['sausage'] = 0                        # counter entry with a zero count

>>>
del c['sausage']

方法:

elements() 返回所有元素,包括重复元素。

Return an iterator over elements repeating
each as many times as its count. Elements are returned in arbitrary order. If
an element’s count is less than one, elements() will ignore it.

>>> c = Counter(a=4, b=2, c=0,
d=-2)

>>> sorted(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']

most_common([n]) 返回重复次数最多的n个元素列表。

Return a list of the n most common elements
and their counts from the most common to the least. If n is omitted or None,
most_common() returns all elements in the counter. Elements with equal counts
are ordered arbitrarily:

>>>
Counter('abracadabra').most_common(3)  #
doctest: +SKIP

[('a', 5), ('r', 2), ('b', 2)]

subtract([iterable-or-mapping])

Elements are subtracted from an iterable or
from another mapping (or counter). Like dict.update() but subtracts counts
instead of replacing them. Both inputs and outputs may be zero or negative.

>>> c = Counter(a=4, b=2, c=0,
d=-2)

>>> d = Counter(a=1, b=2, c=3,
d=4)

>>> c.subtract(d)

>>> c

Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

The usual dictionary methods are available
for Counter objects except for two which work differently for counters.

fromkeys(iterable)

This class method is not implemented for
Counter objects.

update([iterable-or-mapping])

Elements are counted from an iterable or
added-in from another mapping (or counter). Like dict.update() but adds counts
instead of replacing them. Also, the iterable is expected to be a sequence of
elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter objects:

sum(c.values())                 # total of all counts

c.clear()                       # reset all counts

list(c)                         # list unique elements

set(c)                          # convert to a set

dict(c)                         # convert to a regular
dictionary

c.items()                       # convert to a list of
(elem, cnt) pairs

Counter(dict(list_of_pairs))    # convert from a list of (elem, cnt) pairs

c.most_common()[:-n-1:-1]       # n least common elements

+c                              # remove zero and negative counts

1.5.   
OrderedDict objects

Ordered
dictionaries are just like regular dictionaries but have some extra
capabilities relating to ordering operations.

dict是无序的,OrderedDict是有序的。

class collections.OrderedDict([items])

popitem(last=True)

The popitem() method for ordered
dictionaries returns and removes a (key, value) pair. The pairs are returned
in LIFO order if last is true or FIFO order if
false.

move_to_end(key, last=True)

Move an existing key to either
end of an ordered dictionary. The item is moved to the right end if last is
true (the default) or to the beginning if last is false. Raises KeyError if
the key does not exist:

>>>
d = OrderedDict.fromkeys('abcde')

>>>
d.move_to_end('b')

>>>
''.join(d.keys())

'acdeb'

>>>
d.move_to_end('b', last=False)

>>>
''.join(d.keys())

'bacde'

1.6.   
defaultdict objects

class collections.defaultdict([default_factory[, ...]])

它就是一个字典的子类,只不过会自动为它的键赋与一个初始值。

def def_value():
    return 90

di = collections.defaultdict(def_value)
di.setdefault(5,9)
print(di['rrt'])
pr_type(di)

__missing__(key)

If the default_factory attribute
is None, this raises a KeyError exception with the key as argument.

If default_factory is
not None, it is called without arguments to provide a default value for
the given key, this value is inserted in the dictionary for the key,
and returned.

接受一个键值,返回默认的value。

>>> di.__missing__(4)

90

default_factory

This attribute is used by the __missing__() method; it
is initialized from the first argument to the constructor, if present, or
to None, if absent.

上例中的def_value就是default_factory,不过一般情况下是int,list等。

笔记-python-standard library-8.3.collections的更多相关文章

  1. Python Standard Library

    Python Standard Library "We'd like to pretend that 'Fredrik' is a role, but even hundreds of vo ...

  2. The Python Standard Library

    The Python Standard Library¶ While The Python Language Reference describes the exact syntax and sema ...

  3. Python语言中对于json数据的编解码——Usage of json a Python standard library

    一.概述 1.1 关于JSON数据格式 JSON (JavaScript Object Notation), specified by RFC 7159 (which obsoletes RFC 46 ...

  4. 《The Python Standard Library》——http模块阅读笔记1

    官方文档:https://docs.python.org/3.5/library/http.html 偷个懒,截图如下: 即,http客户端编程一般用urllib.request库(主要用于“在这复杂 ...

  5. 《The Python Standard Library》——http模块阅读笔记2

    http.server是用来构建HTTP服务器(web服务器)的模块,定义了许多相关的类. 创建及运行服务器的代码一般为: def run(server_class=HTTPServer, handl ...

  6. 《The Python Standard Library》——http模块阅读笔记3

    http.cookies — HTTP state management http.cookies模块定义了一系列类来抽象cookies这个概念,一个HTTP状态管理机制.该模块支持string-on ...

  7. Python Standard Library 学习(一) -- Built-in Functions 内建函数

    内建函数列表 Built-in Functions abs() divmod() input() open() staticmethod() all() enumerate() int() ord() ...

  8. [译]The Python Tutorial#11. Brief Tour of the Standard Library — Part II

    [译]The Python Tutorial#Brief Tour of the Standard Library - Part II 第二部分介绍更多满足专业编程需求的高级模块,这些模块在小型脚本中 ...

  9. C++11新特性——The C++ standard library, 2nd Edition 笔记(一)

    前言 这是我阅读<The C++ standard library, 2nd Edition>所做读书笔记的第一篇.这个系列基本上会以一章一篇的节奏来写,少数以C++03为主的章节会和其它 ...

  10. [译]The Python Tutorial#10. Brief Tour of the Standard Library

    [译]The Python Tutorial#Brief Tour of the Standard Library 10.1 Operating System Interface os模块为与操作系统 ...

随机推荐

  1. linux使用tree将目录结构写进txt

    比如把caffe的二级目录结构写进txt: tree -L > /home/wmz/treecaffe.txt 则会在/home/wmz/目录下生成一个名为treecaffe.txt的文件,文件 ...

  2. 如何将博客内容输出到pdf

    可以按照三类网页插件:Clearly,Instapaper 和 Readability,实际安装发现,第一个装不上,只有最后一个好用.在firefox或者chrom浏览器装好后,右键switch to ...

  3. centos7下Maven Java selenium3环境搭建

    centos7下Maven Java selenium3环境搭建 一.Jdk安装 我这里用的是open-jdk. [adawang@localhost src]$ sudo yum search op ...

  4. 再次配置caffe-windows vs2015+cuda10.0+RTX2070+python3.5

    前段时间换了一个配置高一点的台式机,因此重新安装了caffe,这次安装遇到了很多以前没有遇到的问题,特记录一下. 先罗列一下电脑配置:vs2015+cuda10.0+python3.5(Anacond ...

  5. plutosdr初步

    关于最近新出的pluto sdr ,一款较新的sdr,可以通过破解将ad9363改成ad9361,提升频率范围,但是据说没有办法改变带宽. 可以通过补丁方式使用某款软件来进行收听fm

  6. Implementing Recurrent Neural Network from Scratch

    Reading CSV file... Parsed 79171 sentences. Found 65376 unique words tokens. Using vocabulary size 8 ...

  7. 【Hibernate QBC】

    HibernateQBC public class HibernateQBC { //演示离线查询 @Test public void testSelect6() { SessionFactory s ...

  8. Jquery span标签的取值赋值

    //赋值 $("#spanid").html(value) //取值 $("#spanid").text()

  9. Sudo临时提权配置

    目录 Sudo临时提权配置 参考 Sudo简介 Sudo配置文件 Sudo配置语法 Sudo配置实例 Sudo日志记录 Sudo临时提权配置

  10. Java入门笔记 05-多线程

    介绍:Java提供了非常优秀的多线程支持,程序可以通过非常简单的方式来启动多线程.本章主要内容为:多线程的创建.启动.控制以及同步操作,并介绍JDK 5新增的线程创建方式. 一.线程的创建与使用: 1 ...