本节主要定义个添加层的函数,在深度学习中是通过创建多层神经网络来实现的,因此添加层的函数会被经常用到:

import tensorflow as tf

def add_layer(inputs, in_size, out_size, activation_function=None):
"""
添加层
:param inputs: 输入数据
:param in_size: 输入数据的列数
:param out_size: 输出数据的列数
:param activation_function: 激励函数
:return:
""" # 定义权重,初始时使用随机变量,可以简单理解为在进行梯度下降时的随机初始点,这个随机初始点要比0值好,因为如果是0值的话,反复计算就一直是固定在0中,导致可能下降不到其它位置去。
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
# 偏置shape为1行out_size列
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
# 建立神经网络线性公式:inputs * Weights + biases,我们大脑中的神经元的传递基本上也是类似这样的线性公式,这里的权重就是每个神经元传递某信号的强弱系数,偏置值是指这个神经元的原先所拥有的电位高低值
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
# 如果没有设置激活函数,则直接就把当前信号原封不动地传递出去
outputs = Wx_plus_b
else:
# 如果设置了激活函数,则会由此激活函数来对信号进行传递或抑制
outputs = activation_function(Wx_plus_b)
return outputs

本节先到这里。

tensorflow添加层-【老鱼学tensorflow】的更多相关文章

  1. tensorflow分类-【老鱼学tensorflow】

    前面我们学习过回归问题,比如对于房价的预测,因为其预测值是个连续的值,因此属于回归问题. 但还有一类问题属于分类的问题,比如我们根据一张图片来辨别它是一只猫还是一只狗.某篇文章的内容是属于体育新闻还是 ...

  2. tensorflow安装-【老鱼学tensorflow】

    TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,Tensor ...

  3. tensorflow例子-【老鱼学tensorflow】

    本节主要用一个例子来讲述一下基本的tensorflow用法. 在这个例子中,我们首先伪造一些线性数据点,其实这些数据中本身就隐藏了一些规律,但我们假装不知道是什么规律,然后想通过神经网络来揭示这个规律 ...

  4. tensorflow变量-【老鱼学tensorflow】

    在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义 ...

  5. tensorflow激励函数-【老鱼学tensorflow】

    当我们回到家,如果家里有异样,我们能够很快就会发现家中的异样,那是因为这些异常的摆设在我们的大脑中会产生较强的脑电波. 当我们听到某个单词,我们大脑中跟这个单词相关的神经元会异常兴奋,而同这个单词无关 ...

  6. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

  7. tensorflow用dropout解决over fitting-【老鱼学tensorflow】

    在机器学习中可能会存在过拟合的问题,表现为在训练集上表现很好,但在测试集中表现不如训练集中的那么好. 图中黑色曲线是正常模型,绿色曲线就是overfitting模型.尽管绿色曲线很精确的区分了所有的训 ...

  8. tensorflow Tensorboard2-【老鱼学tensorflow】

    前面我们用Tensorboard显示了tensorflow的程序结构,本节主要用Tensorboard显示各个参数值的变化以及损失函数的值的变化. 这里的核心函数有: histogram 例如: tf ...

  9. tensorflow Tensorboard可视化-【老鱼学tensorflow】

    tensorflow自带了可视化的工具:Tensorboard.有了这个可视化工具,可以让我们在调整各项参数时有了可视化的依据. 本次我们先用Tensorboard来可视化Tensorflow的结构. ...

随机推荐

  1. 7.docker日志收集

    默认情况下,docker logs或者docker service logs显示命令的输出,就像在终端中以交互方式运行命令时一样.UNIX和Linux命令通常开在运行时间上三个I / O流,所谓的 S ...

  2. opencv 增强现实(一):特征点检测

    import cv2 as cv import numpy as np def draw_keypoints(img, keypoints): for kp in keypoints: x, y = ...

  3. 用beam实现连接kafka和elasticSearch示例 在flink平台运行

    示例实现beam用java编程,监听kafka的testmsg主题,然后将收取到的单词,按5秒做一次统计.结果输出到outputmessage 的kafka主题,同时同步到elasticSearch. ...

  4. 从零开始部署javaWeb项目到阿里云上面

    [详情请看]http://www.cnblogs.com/softidea/p/5271746.html 补充几点特别需要注意的事情 一:putty相当于阿里云的控制台, WinSCP 相当于是专门上 ...

  5. tensorflow 语音识别报错

    cuDnn由7.1版本改为7.4.2.24版本,成功

  6. 20175209 《Java程序设计》第四周学习总结

    20175209 2018-2019-2 <Java程序设计>第四周学习总结 教材知识点总结 1.子类和父类: 子类的继承性:子类与父类在同一包中——子类继承父类中不是private的变量 ...

  7. Ansible安装部署以及常用模块详解

    一.  Ansible 介绍Ansible是一个配置管理系统configuration management system, python 语言是运维人员必须会的语言, ansible 是一个基于py ...

  8. 金融量化分析【day112】:初识量化交易

    一.摘要 为什么需要量化交易? 量化交易是做什么? 量化交易的价值何在? 做量化交易需要什么? 聚宽是什么? 零基础如何快速入门量化交易? 自测与自学 二.量化交易比传统交易强多少? 它能让你的交易效 ...

  9. React 记录(5)

    React文档:https://www.reactjscn.com/docs/state-and-lifecycle.html 慢慢学习:对照教程文档,逐句猜解,截图 React官网:https:// ...

  10. 类型和原生函数及类型转换(三:终结js类型转换)

    Number() parseInt() parseFloat() Boolean() String() toString() 一.显式类型转换 -------Number()函数把对象的值转换为数字. ...