tensorflow添加层-【老鱼学tensorflow】
本节主要定义个添加层的函数,在深度学习中是通过创建多层神经网络来实现的,因此添加层的函数会被经常用到:
import tensorflow as tf
def add_layer(inputs, in_size, out_size, activation_function=None):
"""
添加层
:param inputs: 输入数据
:param in_size: 输入数据的列数
:param out_size: 输出数据的列数
:param activation_function: 激励函数
:return:
"""
# 定义权重,初始时使用随机变量,可以简单理解为在进行梯度下降时的随机初始点,这个随机初始点要比0值好,因为如果是0值的话,反复计算就一直是固定在0中,导致可能下降不到其它位置去。
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
# 偏置shape为1行out_size列
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
# 建立神经网络线性公式:inputs * Weights + biases,我们大脑中的神经元的传递基本上也是类似这样的线性公式,这里的权重就是每个神经元传递某信号的强弱系数,偏置值是指这个神经元的原先所拥有的电位高低值
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
# 如果没有设置激活函数,则直接就把当前信号原封不动地传递出去
outputs = Wx_plus_b
else:
# 如果设置了激活函数,则会由此激活函数来对信号进行传递或抑制
outputs = activation_function(Wx_plus_b)
return outputs
本节先到这里。
tensorflow添加层-【老鱼学tensorflow】的更多相关文章
- tensorflow分类-【老鱼学tensorflow】
前面我们学习过回归问题,比如对于房价的预测,因为其预测值是个连续的值,因此属于回归问题. 但还有一类问题属于分类的问题,比如我们根据一张图片来辨别它是一只猫还是一只狗.某篇文章的内容是属于体育新闻还是 ...
- tensorflow安装-【老鱼学tensorflow】
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,Tensor ...
- tensorflow例子-【老鱼学tensorflow】
本节主要用一个例子来讲述一下基本的tensorflow用法. 在这个例子中,我们首先伪造一些线性数据点,其实这些数据中本身就隐藏了一些规律,但我们假装不知道是什么规律,然后想通过神经网络来揭示这个规律 ...
- tensorflow变量-【老鱼学tensorflow】
在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义 ...
- tensorflow激励函数-【老鱼学tensorflow】
当我们回到家,如果家里有异样,我们能够很快就会发现家中的异样,那是因为这些异常的摆设在我们的大脑中会产生较强的脑电波. 当我们听到某个单词,我们大脑中跟这个单词相关的神经元会异常兴奋,而同这个单词无关 ...
- tensorflow卷积神经网络-【老鱼学tensorflow】
前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...
- tensorflow用dropout解决over fitting-【老鱼学tensorflow】
在机器学习中可能会存在过拟合的问题,表现为在训练集上表现很好,但在测试集中表现不如训练集中的那么好. 图中黑色曲线是正常模型,绿色曲线就是overfitting模型.尽管绿色曲线很精确的区分了所有的训 ...
- tensorflow Tensorboard2-【老鱼学tensorflow】
前面我们用Tensorboard显示了tensorflow的程序结构,本节主要用Tensorboard显示各个参数值的变化以及损失函数的值的变化. 这里的核心函数有: histogram 例如: tf ...
- tensorflow Tensorboard可视化-【老鱼学tensorflow】
tensorflow自带了可视化的工具:Tensorboard.有了这个可视化工具,可以让我们在调整各项参数时有了可视化的依据. 本次我们先用Tensorboard来可视化Tensorflow的结构. ...
随机推荐
- SQL 中左连接与右链接的区别
在微信公众号中看到的sql左连接与右链接的总结,这个图总结的很好,所以单独收藏下:
- ☆ [ZJOI2006] 书架 「平衡树维护数列」
题目类型:平衡树 传送门:>Here< 题意:要求维护一个数列,支持:将某个元素置顶或置底,交换某元素与其前驱或后继的位置,查询编号为\(S\)的元素的排名,查询排名第\(k\)的元素编号 ...
- Codeforces 1082C Multi-Subject Competition(前缀+思维)
题目链接:Multi-Subject Competition 题意:给定n名选手,每名选手都有唯一选择的科目si和对应的能力水平.并且给定科目数量为m.求选定若干个科目,并且每个科目参与选手数量相同的 ...
- go/node/python 多进程与多核cpu
node node单线程,没有并发,但是可以利用cluster进行多cpu的利用.cluster是基于child_process的封装,帮你做了创建子进程,负载均衡,IPC的封装. const clu ...
- JSON三种数据解析方法(转)
原 JSON三种数据解析方法 2018年01月15日 13:05:01 zhoujiang2012 阅读数:7896 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blo ...
- Gradle(一)安装配置
Gradle是一个基于Apache Ant和Apache Maven概念的项目自动化构建开源工具.它使用一种基于Groovy的特定领域语言(DSL)来声明项目设置,抛弃了基于XML的各种繁琐配置.面向 ...
- 深入浅出mybatis之返回主键ID
目录 添加单一记录时返回主键ID 在映射器中配置获取记录主键值 获取新添加记录主键字段值 添加批量记录时返回主键ID 获取主键ID实现原理 添加记录后获取主键ID,这是一个很常见的需求,特别是在一次前 ...
- 深入浅出mybatis之映射器
目录 概述 XML映射器 定义xml映射器 配置xml映射器 使用xml映射器 接口映射器 定义接口映射器 配置接口映射器 使用接口映射器 总结与对比 概述 映射器是MyBatis中最核心的组件之一, ...
- 使用ZooKeeper协调多台Web Server的定时任务处理(方案1)
背景说明: 有一套Web服务程序, 为了保证HA, 需要在多台服务器上部署, 该服务程序有一些定时任务要执行, 现在要保证的是, 同一定时任务不会在多台机器上被同时执行. 方案1 --- 任务级的主备 ...
- EffectiveC++ 第3章 资源管理
我根据自己的理解,对原文的精华部分进行了提炼,并在一些难以理解的地方加上了自己的"可能比较准确"的「翻译」. Chapter 3 资源管理 条款13: 以对象管理资源 有时即使你顺 ...