python数据分析实例(1)
1.获取数据:
想要获得道指30只成分股的最新股价
import requests
import re
import pandas as pd def retrieve_dji_list():
try:
r = requests.get('https://money.cnn.com/data/dow30/')
except ConnectionError as err:
print(err)
search_pattern = re.compile('class="wsod_symbol">(.*?)<\/a>.*?<span.*?">(.*?)<\/span>.*?\n.*?class="wsod_stream">(.*?)<\/span>')
dji_list_in_text = re.findall(search_pattern, r.text)
dji_list = []
for item in dji_list_in_text:
dji_list.append([item[0], item[1], float(item[2])])
return dji_list dji_list = retrieve_dji_list()
djidf = pd.DataFrame(dji_list)
print(djidf)
整理数据, 改变列名, index等
cols=['code','name','lasttrade']
djidf.columns=cols # 改变列名
djidf.index=range(1,len(djidf)+1)
最后结果为:

数据的选择
djidf.code # 获取code列+index
djidf['code'] # 获取code列 , 两者同功能
djidf.loc[1:5,] # 前5行
djidf.loc[:,['code','lasttrade']] #所有行
djidf.loc[1:5,['code','lasttrade']] #1-5行, loc表示标签index
djidf.loc[1,['code','lasttrade']] #1行
djidf.at[1,'lasttrade'] # 只有一个值的时候可以用at
djidf.iloc[2:4,[0,2]] # 表示物理文职, 并且4取不到, 就只有第三行第四行
djidf.iat[1,2] # 单个值
简单的数据筛选: 平均股价, 股价大于180的公司名
djidf.lasttrade.mean() # 121.132
djidf[djidf.lasttrade>=180].name

找到股价前三名的公司 , 降序排列
tempdf=djidf.sort_values(by='lasttrade',ascending=False)
tempdf[:3].name
如何根据index排序呢? 专门有函数sort_index()
df=pd.DataFrame(np.random.randn(3,3),index=['c','b','a'],columns=list('xyz'))
df.sort_index() # 根据index 进行排序
*获取AXP公司过去一年的股价数据获取
import requests
import re
import json
import pandas as pd
from datetime import date
def retrieve_quotes_historical(stock_code):
quotes = []
url = 'https://finance.yahoo.com/quote/%s/history?p=%s' % (stock_code, stock_code)
try:
r = requests.get(url)
except ConnectionError as err:
print(err)
m = re.findall('"HistoricalPriceStore":{"prices":(.*?),"isPending"', r.text)
if m:
quotes = json.loads(m[0]) # m = ['[{...},{...},...]']
quotes = quotes[::-1] # 原先数据为date最新的在最前面
return [item for item in quotes if not 'type' in item]
quotes = retrieve_quotes_historical('AXP')
list1=[]
for i in range(len(quotes)):
x=date.fromtimestamp(quotes[i]['date'])
y=date.strftime(x,'%Y-%m-%d')
list1.append(y)
quotesdf_ori=pd.DataFrame(quotes,index=list1)
quotesdf_m = quotesdf_ori.drop(['adjclose'], axis = 1) #删除adjclose列
quotesdf=quotesdf_m.drop(['date'],axis=1)
print(quotesdf)
上述需要对时间进行处理, 将时间转为'%Y-%m-%d'的格式, 并且将这个时间作为一个list 成为quotesdf的index.

数据的筛选
quotesdf[(quotesdf.index>='2017-03-01') & (quotesdf.index<='2017-03-31')]
quotesdf[(quotesdf.index>='2017-11-30') & (quotesdf.index<='2018-03-31')&
(quotesdf.close>=90)]
简单计算
(1) 统计AXP股价涨跌的天数 (close>open)
len(quotesdf.close>quotesdf.open)
(2) 相邻两天的涨跌
import numpy as np
status=np.sign(np.diff(quotesdf.close))
status # 250 的长度, 比quotesdf 少1
status[np.where(status==1)].size # np.where(status==1)是由下标构成的array
#
上述统计还可以直接用describe函数, 得到基本统计信息
import pandas as pd
import numpy as np
index_df = pd.DataFrame(np.random.rand(3,3), index=['a','b','c'], columns=['index_1','index_2','index_3'])
index_df.describe() # 超级强大

(3) 统计2018一月的交易日天数
t=quotesdf[(quotesdf.index>='2018-01-01') & (quotesdf.index<'2018-02-01')]
len(t) #21
进一步, 如何统计近一年每个月的交易日天数?
统计每个月的出现天数就行了, 如何提取月份信息? 要把时间的字符串转化为 时间格式,
import time
list2=[]
for i in range(len(quotesdf)):
temp=time.strptime(quotesdf.index[i],'%Y-%m-%d')
list2.append(temp.tm_mon) # 取月份
tempdf=quotesdf.copy()
tempdf['month']=list2 # 新增一列月份的数据
print(tempdf['month'].value_counts()) # 计算每个月的出现次数
注意:
strptime 将字符串格式化为time结构, time 中会包含年份, 月份等信息
strftime 将time 结构格式化一个字符串, 之前生成quotesdf中用到过
上述方法略微麻烦, 如何快速知道每个月的交易日天数? groupby
# 统计每一月的股票开盘天数
x=tempdf.groupby('month').count()
# 统计近一年每个月的成交量
tempdf.groupby('month').sum().volume
# 先每个月进行求和, 但是这些对其他列也进行了求和, 属于无效计算, 如何避免?
tempdf.groupby('month').volume.sum() # 交换顺序即可
引申: 一般groupby 与apply 在一起用. 具体不展开了
def f(df):
return df.age.count()
data_df.groupby('taste of mooncake').apply(f)
(二) 合并DataFrame: append, concat, join
# append
p=quotesdf[:2]
q=quotesdf['2018-01-01':'2018-01-05']
p.append(q) # concat
pieces=[tempdf[:5],tempdf[len(tempdf)-5:]]
pd.concat(pieces)
两个结构不同的DataFrame 如何合并?
piece1=quotesdf[0:3]
piece2=tempdf[:3]
pd.concat([piece1,piece2],ignore_index=True)
piece2有month 但是piece1中没有这个字段

join函数中的各种参数, 可以用来实现SQL的各种合并功能.
#join 两个dataframe要有共同的字段(列名)
#djidf: code/name
#AKdf: volume/code/month
# 合并之后的字段: code/name/volume/month
pd.merge(djidf.drop(['lasttrade'],axis=1),AKdf, on='code')
python数据分析实例(1)的更多相关文章
- Python数据分析实例操作
import pandas as pd #导入pandas import matplotlib.pyplot as plt #导入matplotlib from pylab import * mpl. ...
- 【读书笔记与思考】《python数据分析与挖掘实战》-张良均
[读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基 ...
- Python数据分析实战
Python数据分析实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1nlHM1IW8MYg3z79TUwIsWg 提取码:ux8t 复制这段内容后打开百度网盘手 ...
- python数据分析之pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Se ...
- 创建Python数据分析的Docker镜像+Docker自定义镜像commit,Dockerfile方式解析+pull,push,rmi操作
实例解析Docker如何通过commit,Dockerfile两种方式自定义Dcoker镜像,对自定义镜像的pull,push,rmi等常用操作,通过实例创建一个Python数据分析开发环境的Dock ...
- Python数据分析【炼数成金15周完整课程】
点击了解更多Python课程>>> Python数据分析[炼数成金15周完整课程] 课程简介: Python是一种面向对象.直译式计算机程序设计语言.也是一种功能强大而完善的通用型语 ...
- 【python数据分析实战】电影票房数据分析(二)数据可视化
目录 图1 每年的月票房走势图 图2 年票房总值.上映影片总数及观影人次 图3 单片总票房及日均票房 图4 单片票房及上映月份关系图 在上一部分<[python数据分析实战]电影票房数据分析(一 ...
- python&数据分析&数据挖掘--参考资料推荐书籍
1.要用python做数据分析,先得对python语言熟悉,推荐一本入门书 :笨方法学python (learn python the hard way),这本书用非常有趣的讲述方式介绍了python ...
- 《Python金融大数据分析》高清PDF版|百度网盘免费下载|Python数据分析
<Python金融大数据分析>高清PDF版|百度网盘免费下载|Python数据分析 提取码:mfku 内容简介 唯一一本详细讲解使用Python分析处理金融大数据的专业图书:金融应用开发领 ...
随机推荐
- RPC----Hadoop核心协议
什么是RPC RPC设计的目的 RPC的作用 远程过程调用(RPC)是一个协议,程序可以使用这个协议请求网络中另一台计算机上某程序的服务而不需要知道网络细节. 必备知识: 网络七层模型 网络四层模型 ...
- CodeForces 1151B Dima and a Bad XOR
题目链接:http://codeforces.com/contest/1151/problem/B 题目大意: 给定一个n*m的矩阵,里面存放的是自然数,要求在每一行中选一个数,把他们异或起来后结果大 ...
- Linux 学习 (五) 压缩与解压缩命令
Linux达人养成计划 I 学习笔记 常用压缩格式:.zip | .gz | .bz2 | .tar.gz | .tar.bz2 .zip zip 压缩文件名 源文件:压缩文件 zip -r 压缩文件 ...
- python之动态参数 *args,**kwargs和命名空间
一.函数的动态参数 *args,**kwargs, 形参的顺序1.你的函数,为了拓展,对于传入的实参数量应该是不固定,所以就需要用到万能参数,动态参数,*args, **kwargs 1,*args ...
- Linux下C语言生成可执行文件的过程
在当前目录下创建一个C源文件并打开: touch test.c gedit test.c直接编译: gcc test.c -o test 分步骤编译: 1) 预处理 gcc -E test.c ...
- mongoDB 集合(表)操作
mongoDB 集合(表)操作 集合命名规则 使用 utf8 字符(通常不会起中文名字) 不能含有 "\0" 字符 不要以 system. 开头(否咋会覆盖系统集合开头) 不要和关 ...
- flv.js怎么用?全面解读flv.js代码
flv.js项目的代码有一定规模,如果要研究的话,我建议从demux入手,理解了demux就掌握了媒体数据处理的关键步骤,前面的媒体数据下载和后面的媒体数据播放就变得容易理解了. 先普及点背景知识,为 ...
- 深入理解JVM(4)——对象的创建和访问
1.对象的创建 在语言层面上,创建对象(例如克隆,反序列化)通常仅仅是一个new关键字而已. 在虚拟机中,对象(文中讨论的对象限于普通 Java 对象,不包括数组和 Class 对象等)的创建过程如下 ...
- es上的的Watcher示例
Watcher插件配置(创建预警任务) watcher目前是沒有界面配置的,需要通过Resfulapi调用创建.管理.更新预警任务 创建一个Watcher任务的流程是怎样的? 我们先来看下创建一个预警 ...
- Elasticsearch6.5.2 X-pack破解及安装教程
先正常安装 elasticSearch, kibana. 1. 如果是6.5.2版本,可以直接下载jar文件:https://download.csdn.net/download/bigben0123 ...