1. 数组转化为Eigen::Matrix

int array[];

cout << "colMajor matrix = \n" << Map<Matrix3i>(array) << endl;                      // map a contiguous array as a column-major matrix
cout << "rowMajor matrix = \n" << Map<Matrix<int, , , RowMajor>>(array) << endl; // map a contiguous array as a row-major matrix Map<MatrixXi> eigMat1(array, , ); // eigMat1和array指向的是同一个内存空间,是绑定在一起的
MatrixXi eigMat2 = Map<MatrixXi>(array, , ); // eigMat1和array指向不同的内存空间,互不影响

2. Eigen::Matrix转化为数组

Matrix3d eigMat;

double* eigMatptr = eigMat.data();
double* eigMatptrnew = new double[eigMat.size()];
Map<MatrixXd>(eigMatptrnew, eigMat.rows(), eigMat.cols()) = eigMat;

3.更多转化

下面的代码是我写的互相转化的测试

#include <iostream>
#include <vector>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; void array2eigenMat();
void eigenMat2array(); void array2eigenVec();
void eigenVec2array(); void vector2eigenMat();
void eigenMat2vector(); void vector2eigenVec();
void eigenVec2vector(); int main()
{
cout << "hello world" <<endl;
array2eigenMat();
eigenMat2array(); array2eigenVec();
eigenVec2array(); vector2eigenMat();
eigenMat2vector(); vector2eigenVec();
eigenVec2vector();
return ;
} void array2eigenMat()
{
cout << "-------------------------- array2eigenMat --------------------------" << endl; int array[];
for (int i = ; i < ; ++i) array[i] = i;
cout << "array = [ "; for (int i = ; i < ; ++i) cout << array[i] << " "; cout << "]" << endl; cout << "colMajor matrix = \n" << Map<Matrix3i>(array) << endl; // map a contiguous array as a column-major matrix
cout << "rowMajor matrix = \n" << Map<Matrix<int, , , RowMajor>>(array) << endl; // map a contiguous array as a row-major matrix cout << "stride matrix = \n" << Map<MatrixXi, , OuterStride<>>(array, , , OuterStride<>()) << endl;
//mapping an array while specifying an outer stride. Here, since we're mapping as a column-major matrix,
// 'outer stride' means the pointer increment between two consecutive columns Map<MatrixXi> eigMat1(array, , );
MatrixXi eigMat2 = Map<MatrixXi>(array, , );
array[] = ; cout << "eigMat1 matrix = \n"; cout << eigMat1 << endl;
cout << "eigMat2 matrix = \n"; cout << eigMat2 << endl;
cout << "---------------------------------------------------------------------" << endl; }
void eigenMat2array()
{
cout << "-------------------------- eigenMat2array --------------------------" << endl;
Matrix3d eigMat;
eigMat <<
, , ,
, , ,
, , ;
cout << "init eigMat = \n"; cout << eigMat << endl; double* eigMatptr = eigMat.data();
cout << "array = [ "; for (int i = ; i < ; ++i) cout << eigMatptr[i] << " "; cout << "]" << endl; eigMat(, ) = ;
cout << "array = [ "; for (int i = ; i < ; ++i) cout << eigMatptr[i] << " "; cout << "]" << endl; double *eigMatptrnew = new double[eigMat.size()];
Map<MatrixXd>(eigMatptrnew, eigMat.rows(), eigMat.cols()) = eigMat; eigMat(, ) = ;
cout << "init matrix = \n"; cout << eigMat << endl;
cout << "array = [ "; for (int i = ; i < ; ++i) cout << eigMatptr[i] << " "; cout << "]" << endl;
cout << "---------------------------------------------------------------------" << endl;
} void array2eigenVec()
{
cout << "-------------------------- array2eigenVec --------------------------" << endl; int array[];
for (int i = ; i < ; ++i) array[i] = i;
cout << "data array = [ "; for (int i = ; i < ; ++i) cout << array[i] << " "; cout << "]" << endl; Map<VectorXi> eigVec(array, );
cout << "eigen vector transpose = " << eigVec.transpose() << endl;
cout << "stride vector transpose = " << Map<VectorXi, , InnerStride<> >(array, ).transpose() << endl;
// map an array as a vector, specifying an inner stride, that is, the pointer increment between two consecutive coefficients array[] = ;
cout << "eigen vector transpose = " << eigVec.transpose() << endl;
cout << "stride vector transpose = " << Map<VectorXi, , InnerStride<> >(array, ).transpose() << endl; cout << "---------------------------------------------------------------------" << endl;
}
void eigenVec2array()
{
cout << "-------------------------- eigenVec2array --------------------------" << endl;
VectorXf eigvec();
eigvec << , , , , ;
cout << "eigen vector transpose = " << eigvec.transpose() << endl; float *array = new float;
array = eigvec.data();
cout << "data array = [ "; for (int i = ; i < eigvec.size(); ++i) cout << array[i] << " "; cout << "]" << endl; eigvec() = ;
cout << "data array = [ "; for (int i = ; i < eigvec.size(); ++i) cout << array[i] << " "; cout << "]" << endl; array[] = ;
cout << "eigen vector transpose = " << eigvec.transpose() << endl; cout << "---------------------------------------------------------------------" << endl;
} void vector2eigenMat()
{
cout << "-------------------------- vector2eigenMat --------------------------" << endl;
vector<int> stdvec{ , , , , , , , , };
Map<Matrix<int, , , RowMajor>> eigMat1(stdvec.data());
MatrixXi eigMat2 = Map<Matrix<int, , , RowMajor>>(stdvec.data()); cout << "eigMat1 matrix = \n"; cout << eigMat1 << endl;
cout << "eigMat2 matrix = \n"; cout << eigMat2 << endl; stdvec[] = ;
cout << "eigMat1 matrix = \n"; cout << eigMat1 << endl;
cout << "eigMat2 matrix = \n"; cout << eigMat2 << endl; cout << "---------------------------------------------------------------------" << endl;
}
void eigenMat2vector()
{
cout << "-------------------------- eigenMat2vector --------------------------" << endl;
Matrix3d eigMatCol;
eigMatCol <<
, , ,
, , ,
, , ;
cout << "eigen matrix col = \n"; cout << eigMatCol << endl;
vector<double> stdvec1(eigMatCol.data(), eigMatCol.data() + eigMatCol.size());
cout << "std vector1 = ["; for (int i = ; i < stdvec1.size(); ++i) cout << stdvec1[i] << " "; cout << "]" << endl; Matrix<double, , , RowMajor> eigMatRow = eigMatCol;
cout << "eigen matrix row = \n"; cout << eigMatCol << endl;
vector<double> stdvec2(eigMatRow.data(), eigMatRow.data() + eigMatRow.size());
cout << "std vector2 = ["; for (int i = ; i < stdvec2.size(); ++i) cout << stdvec2[i] << " "; cout << "]" << endl; cout << "---------------------------------------------------------------------" << endl;
} void vector2eigenVec()
{
cout << "-------------------------- vector2eigenVec --------------------------" << endl;
vector<int> stdvec{ , , , , };
cout << "std vector = ["; for (int i = ; i < stdvec.size(); ++i) cout << stdvec[i] << " "; cout << "]" << endl; Map<VectorXi> eigVec1(stdvec.data(), stdvec.size());
VectorXi eigVec2 = Map<VectorXi>(stdvec.data(), stdvec.size());
cout << "eigen vector1 transpose = " << eigVec1.transpose() << endl;
cout << "eigen vector2 transpose = " << eigVec2.transpose() << endl;
cout << "stride vector transpose = " << Map<VectorXi, , InnerStride<> >(stdvec.data(), ).transpose() << endl; stdvec[] = ;
cout << "eigen vector1 transpose = " << eigVec1.transpose() << endl;
cout << "eigen vector2 transpose = " << eigVec2.transpose() << endl; cout << "stride vector transpose = " << Map<VectorXi, , InnerStride<> >(stdvec.data(), ).transpose() << endl; cout << "---------------------------------------------------------------------" << endl;
}
void eigenVec2vector()
{
cout << "-------------------------- eigenVec2vector --------------------------" << endl;
VectorXf eigvec();
eigvec << , , , , ;
cout << "eigen vector transpose = " << eigvec.transpose() << endl; vector<float> stdvec(eigvec.data(), eigvec.data() + eigvec.size());
cout << "std vector = ["; for (int i = ; i < stdvec.size(); ++i) cout << stdvec[i] << " "; cout << "]" << endl; eigvec() = ;
cout << "std vector = ["; for (int i = ; i < stdvec.size(); ++i) cout << stdvec[i] << " "; cout << "]" << endl;
cout << "---------------------------------------------------------------------" << endl;
}

程序运行结果

4. 参考

1. Eigen::Map

2. Eigen quick reference guide

3. Vlad's Blog

Eigen::Matrix与array数据转换的更多相关文章

  1. Eigen学习之Array类

    Eigen 不仅提供了Matrix和Vector结构,还提供了Array结构.区别如下,Matrix和Vector就是线性代数中定义的矩阵和向量,所有的数学运算都和数学上一致.但是存在一个问题是数学上 ...

  2. eigen Matrix详解

    Eigen Matrix 详解 在Eigen中,所有的matrices 和vectors 都是模板类Matrix 的对象,Vectors 只是一种特殊的矩阵,行或者列为1. Matrix的前三个模板参 ...

  3. numpy中的matrix与array的区别

    Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array ...

  4. Numpy中matrix()和array()的区别

    matrix() 和 array() 的区别,主要从以下方面说起: 1. 矩阵生成方式不同 import numpy as np a1 = np.array([[1, 2], [3, 4]]) b1 ...

  5. Python与线性代数——Numpy中的matrix()和array()的区别

    Numpy中matrix必须是2维的,但是 numpy中array可以是多维的(1D,2D,3D····ND).matrix是array的一个小的分支,包含于array.所以matrix 拥有arra ...

  6. 73. Set Matrix Zeroes (Array)

    Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. Follow ...

  7. 59. Spiral Matrix II (Array)

    Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. For ...

  8. Joint Approximative Diagonalization of Eigen matrix (JADE)

    特征矩阵联合相似对角化算法[1]. Cardoso于1993年提出的盲信号分离具有代表性的一种算法.是一种基于四阶累积量特征矩阵近似联合对角化盲分离算法.该算法将目标函数最大化问题等价于一组四阶累积量 ...

  9. array和matrix

    array:数组 matrix:矩阵 list:列表 a = [[1,2,3],[4,5,6]] 两种array的定义方式,第一种方式可以看出list不是array,但却有很大的联系 a = np.a ...

随机推荐

  1. ibufds原语

    低压差分传送技术是基于低压差分信号(Low Volt-agc Differential signaling)的传送技术,从一个电路板系统内的高速信号传送到不同电路系统之间的快速数据传送都可以应用低压差 ...

  2. 舵机&数据处理&stm32内存之堆栈溢出(遇到的问题)

    产品名称:TOWER PRO(辉盛)大扭力舵机MG996R (MG995升级产品)6v/11Kg厂家编号:MG996R产品净重: 55g产品尺寸: 40.7*19.7*42.9mm产品拉力: 9.4k ...

  3. bzoj3527: [Zjoi2014]力 卷积+FFT

    先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...

  4. CF209C Trails and Glades

    题目链接 题意 有一个\(n\)个点\(m\)条边的无向图(可能有重边和自环)(不一定联通).问最少添加多少条边,使得可以从\(1\)号点出发,沿着每条边走一遍之后回到\(1\)号点. 思路 其实就是 ...

  5. 安利一个刚考过的信息安全认证Security+

    在目前的信息安全大潮之下,人才是信息安全发展的关键.而目前国内的信息安全人才是非常匮乏的,拥有国际信息安全认证的人才,在未来职业发展.升职加薪的道路上必将优于普通的信息安全从业者. 果哥今天推荐201 ...

  6. django系列 2 :启动应用,目录结构解读

    来源:https://docs.djangoproject.com/en/2.1/intro/tutorial01/ 该教程是创建一个用于投票的网页. 1.使用命令创建site 进入要创建site的目 ...

  7. I/O模型之三:两种高性能 I/O 设计模式 Reactor 和 Proactor

    目录: <I/O模型之一:Unix的五种I/O模型> <I/O模型之二:Linux IO模式及 select.poll.epoll详解> <I/O模型之三:两种高性能 I ...

  8. 前端开发常用 Linux 命令

    clear // 清理命令窗口(可简写为cls) exit // 关闭命令窗口 mkdir 文件夹名 // 新建文件夹 cd 文件夹名 // 进入文件夹 cd .. // 返回上一级文件夹目录 rm ...

  9. sort注意事项

    虽然是小事但是还是得注意一下:sort 区间左开右闭 从0开始 e.g: 10 9 8 7 6 5 4 3 2 1 sort(a+6,a+11)  区间 6 - 10 sort(a+6,a+10)  ...

  10. 计算int数组中的最大,最小,平均值

    public static void testNumber(int[] arr) { int max = arr[0]; int min = arr[0]; int avg = 0; int sum ...