[物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.3 例 --- 电偶极辐射
1. 偶极子: 相距为 $l$, 带电量分别为 $\pm q$ 的一对电荷组成的系统. 称 $$\bex {\bf m}=q{\bf l} \eex$$ 为电偶极矩, 其中 ${\bf l}$ 为 $-q$ 到 $q$ 的向量.
2. 取 ${\bf l}$ 为 $z$ 轴, 考虑偶极子的振动: $$\bex {\bf l}(t)=l_0 e^{-i\omega t} {\bf e}_3. \eex$$ 则
(1) ${\bf j}=\rho {\bf v}=\rho\cfrac{\rd {\bf l}}{\rd t}=-i\omega l_0\rho e^{-i\omega t}{\bf e}_3$.
(2) $$\beex \bea &\quad \cfrac{1}{c^2} \cfrac{\p^2{\bf A}}{\p t^2}-\lap{\bf A}=\mu{\bf j}\\ &\ra {\bf A}(t,P) =\cfrac{\mu_0}{4\pi}\int_{r_{P'P}\leq ct} \cfrac{{\bf j}\sex{t-\cfrac{r_{P'P}}{c},P'}}{r_{P'P}}\rd V_{P'}\\ &\quad=-\cfrac{i\mu_0\omega l_0}{4\pi r}e^{-i\omega t+i\frac{\omega r}{c}}\int_{r_{P'P}\leq ct}\rho \rd V_{P'} {\bf e}_3\\ &\quad=-i\cfrac{\mu_0\omega}{4\pi r}e^{ikr}{\bf m}(t)\quad\sex{r\gg l}\\ &\quad\sex{{\bf m}(t)=q{\bf l}(t),\ k=\cfrac{\omega}{c}=\cfrac{2\pi }{cT}:\mbox{ 波数}}. \eea \eeex$$
(3) $$\beex \bea &\quad \cfrac{\p}{\p z}\sex{-i\cfrac{\mu_0\omega}{4\pi r}e^{ikr}m(t)}+\cfrac{1}{c^2}\cfrac{\p \phi}{\p t}=0\quad\sex{Lorentz\mbox{ 条件}}\\ &\ra \cfrac{\p}{\p t} \sez{ \cfrac{\p}{\p z}\sex{\cfrac{1}{4\pi \ve_0r}e^{ikr}}m(t)+\phi }=0\\ &\ra \phi=-\cfrac{\p}{\p z}\sex{\cfrac{1}{4\pi \ve_0r}e^{ikr}}m(t)+\phi_0(x,y,z)\\ &\ra \phi=-\cfrac{\p}{\p z}\sex{\cfrac{1}{4\pi \ve_0r}e^{ikr}}m(t). \eea \eeex$$
(4) $$\beex \bea {\bf B}&=\rot {\bf A}\\ &=\cfrac{\mu_0ck^2}{4\pi r} e^{ikr}\sex{1-\cfrac{1}{ikr}}{\bf n}\times {\bf m}\quad\sex{{\bf n}=\cfrac{{\bf r}}{r}}. \eea \eeex$$
(5) $$\beex \bea -\cfrac{\p {\bf A}}{\p t} &=i\cfrac{\mu_0\omega}{4\pi r}e^{ikr}\sez{-i\omega {\bf m}}\\ &=\cfrac{\mu_0\omega^2}{4\pi r}e^{ikr}{\bf m}\\ &=\cfrac{k^2}{4\pi \ve_0r}e^{ikr}{\bf m},\\ -\n \phi&=\cfrac{1}{4\pi \ve_0}\n \cfrac{\p}{\p z}\sex{\cfrac{1}{r}e^{ikr}}m\\ &=\cfrac{1}{4\pi \ve_0} \n \sex{-\cfrac{z}{r^3}e^{ikr}+\cfrac{ikz}{r^2}e^{ikr}}m\\ &=\cfrac{1}{4\pi \ve_0} \n\sez{ \sex{-\cfrac{1}{r^3}+\cfrac{ik}{r^2}}e^{ikr}z }m\\ &=\cfrac{1}{4\pi \ve_0} \left[ \sex{\cfrac{3}{r^4}{\bf n} -\cfrac{2ik}{r^3}{\bf n}}e^{ikr}zm +ik\sex{-\cfrac{1}{r^3}+\cfrac{ik}{r^2}}e^{ikr}{\bf n} z m\right. \\ &\quad\quad\left. +\sex{-\cfrac{1}{r^3}+\cfrac{ik}{r^2}}e^{ikr}\n z m \right]\\ &=\cfrac{1}{4\pi \ve_0}\sez{ r({\bf n}\cdot{\bf m}) e^{ikr}{\bf n} \sex{\cfrac{3}{r^4}-\cfrac{3ik}{r^3}-\cfrac{k^2}{r^2} }+\sex{-\cfrac{1}{r^3}+\cfrac{ik}{r^2}}e^{ikr}{\bf m} }\\ &=\cfrac{1}{4\pi \ve_0} \sez{ ({\bf n}\cdot{\bf m})e^{ikr} {\bf n}\sex{\cfrac{3}{r^3}-\cfrac{3ik}{r^2}-\cfrac{k^2}{r}} +\sex{-\cfrac{1}{r^3}+\cfrac{ik}{r^2}}e^{ikr}{\bf m} }\\ &=-\cfrac{k^2}{4\pi \ve_0r}({\bf n}\cdot{\bf m}){\bf n} +\cfrac{1}{4\pi\ve_0r} \sex{\cfrac{1}{r^2}-\cfrac{ik}{r}} e^{ikr}\sez{3({\bf n}\cdot{\bf m}){\bf n}-{\bf m}},\\ {\bf E}&=-\n\phi-\cfrac{\p {\bf A}}{\p t}\\ &=\cfrac{k^2}{4\pi\ve_0r}e^{ikr}({\bf n}\times{\bf m})\times {\bf n} +\cfrac{1}{4\pi\ve_0r} \sex{\cfrac{1}{r^2}-\cfrac{ik}{r}} e^{ikr}\sez{3({\bf n}\cdot{\bf m}){\bf n}-{\bf m}}. \eea \eeex$$
(5) 当 $r\ll \lm=cT=\cfrac{2\pi c}{\omega}=\cfrac{2\pi}{k}$ 时, $$\bex {\bf B}=\cfrac{\mu_0ck}{4\pi r^2}{\bf n}\times {\bf m},\quad {\bf E}=\cfrac{1}{4\pi r^3}[3({\bf n}\cdot{\bf m}){\bf n}-{\bf m}]. \eex$$ 而 $B\ll E$, 称为静场区 (电场为主).
(6) 当 $r\gg \lm$ 时, $$\bex {\bf B}=\cfrac{\mu_0ck^2}{4\pi r}e^{ikr}{\bf n}\times {\bf m},\quad{\bf E}=c{\bf B}\times {\bf n}. \eex$$ 而为波动场区 (辐射区). 此时, $$\bex E=cB=\cfrac{\mu_0\omega^2m_0}{4\pi r}\sin \tt\sev{\cos\sez{\omega\sex{t-\cfrac{r}{c}}}}. \eex$$ 于是电磁场是以电偶极振子为中心的球面波, 相位为 $\omega\sex{t-\cfrac{r}{c}}$ 相同的各点的场强不一定相同, 还与 $\tt$ 有关. 赤道上, 场强最大.
(7) 电磁能量密度 $$\bex \cfrac{1}{2}\sex{\ve_0E^2+\cfrac{1}{\mu_0}B^2} =\cfrac{\mu_0k^2\omega^2m_0^2}{16\pi r^2}\sin^2\tt\cos^2\sez{\omega\sex{t-\cfrac{r}{c}}}; \eex$$ 能量流密度向量 ${\bf S}$ 方向与 ${\bf r}$ 相同, 大小为 $$\bex S=\cfrac{c\mu_0k^2\omega^2m_0^2}{16\pi^2r^2}\sin^2\tt\cos^2\sez{\omega\sex{t-\cfrac{r}{c}}}; \eex$$ 单位时间内通过以振子为球心, $r$ 为半径的球面的总能量为 $$\bex P(t)=\int_0^\pi S\cdot 2\pi r\sin \tt\cdot r\rd \tt =\cfrac{1}{6\pi}c\mu_0k^2\omega^2m_0^2\cos^2\sez{\omega\sex{t-\cfrac{r}{c}}}; \eex$$ 单位时间内辐射的平均能量为 $$\bex \bar P=\cfrac{1}{T}\int_0^T P(t)\rd t =\cfrac{1}{12}\mu_0\omega^4m_0^2, \eex$$ 其中 $T=\cfrac{2\pi}{\omega}$.
[物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.3 例 --- 电偶极辐射的更多相关文章
- [物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.2 电磁场的标势与矢势
1. 标势.矢势: $$\beex \bea \Div{\bf B}=0&\ra \exists\ {\bf A},\st {\bf B}=\rot{\bf A},\\ \rot{\bf ...
- [物理学与PDEs]第1章第6节 电磁场的标势与矢势 6.1 预备知识
1. 若 ${\bf B}$ 为横场 ($\Div{\bf B}=0\ra {\bf k}\cdot {\bf B}=0\ra $ 波的振动方向与传播方向平行), 则 $$\bex \exists\ ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
随机推荐
- 【Python 21】52周存钱挑战1.0
1.案例描述 按照52周存钱法,存钱人必须在一年52周内,每周递存10元.例如,第一周存10元,第二周存20元,第三周存30元,直到第52周存520元. 记录52周后能存多少钱?即10+20+30+. ...
- Python开发【socket篇】解决粘包
客户端 import os import json import struct import socket sk = socket.socket() sk.connect(('127.0.0.1',8 ...
- supervisord支持扩展(xml RPC API & Third Party Applications and Libraries)
XML-RPC API Documentation http://www.supervisord.org/api.html Third Party Applications and Libraries ...
- Spring Security(二十九):9.4.1 ExceptionTranslationFilter
ExceptionTranslationFilter is a Spring Security filter that has responsibility for detecting any Spr ...
- 在Bootstrap开发框架的工作流模块中实现流程完成后更新资料状态处理
在开发查看流程表单明细的时候,在Web界面中,我们往往通过使用@RenderPage实现页面内容模块化的隔离,减少复杂度,因此把一些常用的如审批.撤销.会签.阅办等等的流程步骤都放到了通用处理的页面V ...
- .Net Core HttpClient 忽略https证书提醒
在测试中经常会遇到请求一些https的url,但又没有本地证书,这时候可以用下面的方法忽略警告 var httpclientHandler = new HttpClientHandler(); htt ...
- python 项目自动生成requirements.txt文件
主要使用目的: 任何应用程序通常需要设置安装所需并依赖一组类库来满足工作要求.通过requirements.txt可以一次性安装程序所需要和依赖的包. 为工程生成requirements.txt的两种 ...
- appium框架之bootstrap
(闲来无事,做做测试..)最近弄了弄appium,感觉挺有意思,就深入研究了下. 看小弟这篇文章之前,先了解一下appium的架构,对你理解有好处,推荐下面这篇文章:testerhome appium ...
- 计算机网络基础知识-OSI七层协议模型
一.物理层 物理层主要规定了物理设备的标准,如网线的类型.光纤的接口类型.各种传输介质的传输速率,物理层的数据以比特流(二进制)的形式存在,传输时将比特流转化为电流强弱,达到目的地之后再转化为比特流. ...
- winform,同个程序只允许启动一次
static class Program { [DllImport("User32.dll")] private static extern bool ShowWindowAsyn ...