设 $3\times 3$ 阵 ${\bf A}$ 的特征值为 $\lm_1,\lm_2,\lm_3$, 证明 $\cof {\bf A}$ 的特征值为 $$\bex \lm_2\lm_3,\quad \lm_3\lm_1,\quad \lm_1\lm_2.  \eex$$

证明:

证明: 由扰动法, 不妨设 ${\bf A}$ 可逆, 而 $$\beex \bea 0&=|\lm_i{\bf I}-{\bf A}|\cdot|\cof {\bf A}|\\ &=|\lm_i\cof{\bf A}-|{\bf A}|{\bf I}|\\ &=|\lm_i\cof{\bf A}-\lm_1\cdots\lm_n{\bf I}|\\ &=(-\lm_i)^n|\lm_1\cdots\lm_{i-1}\lm_{i+1}\cdots\lm_n{\bf I}-\cof{\bf A}|. \eea \eeex$$

[物理学与PDEs]第5章习题9 伴随矩阵的特征值的更多相关文章

  1. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  2. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  3. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  4. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  5. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  6. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

  7. [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程

    设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...

  8. [物理学与PDEs]第1章习题5 偶极子的电场强度

    试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...

  9. [物理学与PDEs]第5章习题10 多凸函数一个例子

    证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...

随机推荐

  1. React.js开发的基本配置(配了两天)

    记录下心酸的过程: 1.安装npm 安装node.js,这时候你就可以使用npm了. 因为官方的源下载npm的包比较慢,所以可以用淘宝的源,这时候使用nrm来进行npm源的切换 在cmd中执行 npm ...

  2. Linux Swap交换分区探讨

    Swap交换分区概念 Linux divides its physical RAM (random access memory) into chucks of memory called pages. ...

  3. supervisor管理nginx

    command = /usr/local/bin/nginx 这个命令默认是后台启动,但是supervisor不能监控后台程序,所以supervisor就一直执行这个命令. 加上-g 'daemon ...

  4. Docker(1):CentOS7 安装Docker

    1.查看系统内核,docker要求系统的内核版本高于3.10 #  uname -r 2.升级yum包,确保最新 #   yum update 3.安装所需要依赖包 #   yum install - ...

  5. springmvc中的类型转换器

    在使用springmvc时可能使用@RequestParam注解或者@RequestBody注解,他们的作用是把请求体中的参数取出来,给方法的参数绑定值. 假如方法的参数是自定义类型,就要用到类型转换 ...

  6. SpringBoot四大神器之Actuator

    介绍 Spring Boot有四大神器,分别是auto-configuration.starters.cli.actuator,本文主要讲actuator.actuator是spring boot提供 ...

  7. python3 pickle模块

    import pickle '''将对象转化为硬盘能识别的bytes的过程被称为序列号将bytes转化为对象的过程被称为反序列化'''lst = ["苹果", "橘子&q ...

  8. offsetLeft、offsetX等

    https://blog.csdn.net/w390058785/article/details/80461845

  9. iOS开发基础-UITableView控件简单介绍

     UITableView 继承自 UIScrollView ,用于实现表格数据展示,支持垂直滚动.  UITableView 需要一个数据源来显示数据,并向数据源查询一共有多少行数据以及每一行显示什么 ...

  10. .Net Core应用框架Util介绍(六)

    前面介绍了Util是如何封装以降低Angular应用的开发成本. 现在把关注点移到服务端,本文将介绍分层架构各构造块及基类,并对不同层次的开发人员应如何进行业务开发提供一些建议. Util分层架构介绍 ...