Background

Last day we talk about Python Basics in Chinese. Today, we will do data analysis with python and explain in English(No zuo, no die. In this section, we will discuss prominent hypotheses that have been proposed to explain the EU referendum result and how we try to capture them in our empirical analysis.

In this topic, we try to find application of Regularization Linear Regression and Overfitting.

Overfitting: the model is already so complex that it fits the idiosyncrasies of our training data, idiosyncrasies which limit the model's ability to generalize (as measured by the testing error).

  • Refer to there to see more background.
  • Data can be download here

we will look at four broad groups of variables:

  • EU exposure through immigration, trade and structural funds;
  • local public service provision and fiscal consolidation;
  • demography and education;
  • economic structure, wages and unemployment.

Let's have a brief view of the data

We can use pandas package to load various data file, including stata file (ending with ".dta").

from pandas.io.stata import StataReader, StataWriter
import pandas as pd
stata_data = StataReader("referendum data.dta", convert_categoricals=False) data = stata_data.read()# basic data
varlist = stata_data.varlist# variable list
value_labels = stata_data.value_labels() # labels/ description of data value
fmtlist = stata_data.fmtlist
variable_labels = stata_data.variable_labels()# labels/ description of the variables var = [i for i in variable_labels]
var_label = [variable_labels[i] for i in variable_labels]
df_labels = pd.DataFrame({"variable": var, "variable_label": var_label})# we use DataFrame to see the formated table of variable labels

Then, we can see variables meaning each, and the labels include: Total votes of remain/leave, Region of the votes, Population 60 older growth (2001-2011), Population 60 older (2001), Median hourly pay (2005), Median hourly pay change (2005-2015), Non-EU migrant resident share (2001), Non-EU migrant resident growth (2001-2011), Change in low skilled labour force share (2001-2011), Unemployment rate (2015), Total economy EU dependence (2010), Total fiscal cuts (2010-2015), EU Structural Funds per capita (2013) and so on.

Variable selection analysis

  • Dependent variable(DV): we choose 'Pct_Remain' as our DV as it decide whether remain or leave

  • Independent variable(IV): we choose 'Region', 'pensionergrowth20012011', 'ResidentAge60plusshare',

    'median_hourly_pay2005', 'median_hourly_pay_growth', 'NONEU_2001Migrantshare', 'NONEU_Migrantgrowth',

    'unqualifiedsharechange', 'umemployment_rate_aps', 'Total_EconomyEU_dependence', 'TotalImpactFLWAAYR', 'eufundspercapitapayment13'

  • Four types of IV:

    • EU exposure through immigration('NONEU_2001Migrantshare', 'NONEU_Migrantgrowth'), trade and structural funds('eufundspercapitapayment13');
    • Fiscal consolidation('TotalImpactFLWAAYR');
    • demography('Region', 'pensionergrowth20012011', 'ResidentAge60plusshare', 'unqualifiedsharechange');
    • economic structure('Total_EconomyEU_dependence'), wages('median_hourly_pay2005', 'median_hourly_pay_growth') and unemployment('umemployment_rate_aps').

    IVs = ['Region', 'pensionergrowth20012011', 'ResidentAge60plusshare', 'median_hourly_pay2005', 'median_hourly_pay_growth', 'NONEU_2001Migrantshare', 'NONEU_Migrantgrowth', 'unqualifiedsharechange', 'umemployment_rate_aps', 'Total_EconomyEU_dependence', 'TotalImpactFLWAAYR', 'eufundspercapitapayment13']

    df1 = pd.read_stata("referendum data.dta")

    df1 = df1.set_index("id")# load the stata data into DataFrame format data (df1) directly.

    df1.shape

(382, 109)

We can see the data has many attributes, and this lead problem to our model - overfitting and lacking generalization (generalize to new, unseen cases), we'll solve the problem next.

drop_list = list(set(var) - set(IVs) - {"id"} - {"Pct_Remain"})# to get our df including only selected attributes
df = df1.drop(drop_list, axis = 1)
df = df.dropna()
df.describe()# we can see the data has different magnitude(some less than 1, while some over 100, and one string type for "Region")

Encode the region

import warnings
warnings.filterwarnings("ignore",category=DeprecationWarning) #Next, we use LabelEncoder().fit_transform to transform Region into norminal variable
from sklearn.preprocessing import LabelEncoder
df['Region'] = LabelEncoder().fit_transform(df['Region'])
df.describe()

Y = pd.DataFrame(df['Pct_Remain'])# we select x and Y out as the IV and DVs
x = df.drop('Pct_Remain', axis = 1)
x.head()# view the x

Standardise the X - varibales

#We see that magnitude of our variables are different, we need to standardise the X - variables
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(x)
scaled_x = scaler.transform(x)
x_scaled_df = pd.DataFrame({x.columns[i]: scaled_x[:,i] for i in range(12)})
x_scaled_df.head()

Split data into train set and test set

from sklearn.model_selection import train_test_split
seed = 2019
test_size = 0.20 X_train, X_test, Y_train, Y_test = train_test_split(x_scaled_df, y, test_size = test_size, random_state = seed)

Train Model

# Import a range of sklearn functions
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression, Lasso, LassoCV, RidgeCV, Ridge, ElasticNet
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.feature_selection import SelectFromModel

Fit an OLS linear model to the x and y

#Fit an OLS model to the data and view the coefficients
reg_OLS = LinearRegression(normalize=True).fit(X_train, Y_train)
coef = pd.Series(reg_OLS.coef_, index = x_scaled_df.columns)
print(coef)

To compare, we also choose Lasso model - A Regularization Technique

Fit a Lasso model - A Regularization Technique

Lasso model use alpha as the penalty parameter to solve overfitting problem.

LassoCV can be used to iteratively fit the alpha parameter. Try running this now and printing out the coeffs

reg_LassoCV = LassoCV(normalize=True)
reg_LassoCV.fit(X_train,Y_train) print("Best alpha using built-in LassoCV: %f" % reg_LassoCV.alpha_)
print("Best score using built-in LassoCV: %f" %reg_LassoCV.score(X_train,Y_train))
coef = pd.Series(reg_LassoCV.coef_, index = x_scaled_df.columns)
print(coef)

%matplotlib inline
import matplotlib.pyplot as plt# let's see the coefficient in graph
imp_coef = coef.sort_values()
plt.rcParams['figure.figsize'] = (8.0, 10.0)
imp_coef.plot(kind = "barh")
plt.title("Feature importance using Lasso Model")

View accuracy of the model

There, we assume when "Pct_Remain" (percentage of those who choose remain) is less than 0.5, people choose to leave while over 0.5, remain.

from sklearn.metrics import *
def predict( model, X_test = X_test, Y_test = Y_test):
"""
Input: trained model, test_IVs(X) and test_DV(Y)
Output: accuracy of the model(as the assumption defines)
"""
Y_test_0_1 = [0 if i<50 else 1 for i in Y_test]
y_pred = model.predict(X_test)
predictions = [0 if i<50 else 1 for i in y_pred]
accuracy = accuracy_score(Y_test_0_1, predictions)
confusion_matrix1 = confusion_matrix(Y_test_0_1, predictions)
print(model)
print("Confusion matrix:\n"+str(confusion_matrix1))
return ("Accuracy: %.2f%%" % (accuracy * 100.0)) predict(reg_OLS, X_test, Y_test)

predict(reg_LassoCV, X_test, Y_test)

We can see that regularized OLS gives same result as OLS model, mainly because we selecte 12 IVs (far more less than 367 observations) by observation or experience. Thus, the train model doesn't meet the overfitting problem.

What if we choose all variables?

df1_all = df1.dropna()
Y_all = df1_all["Pct_Remain"]
X_all = df1_all.drop("Pct_Remain", axis = 1)
for i in X_all.columns:
X_all[i] = LabelEncoder().fit_transform(X_all[i])#Label Encoder scaler = StandardScaler().fit(X_all)
scaled_x = scaler.transform(X_all)
x_all_scaled_df = pd.DataFrame({X_all.columns[i]: scaled_x[:,i] for i in range(len(X_all.columns))})#standardise X seed = 2019
test_size = 0.20
X_train_all, X_test_all, Y_train_all, Y_test_all = train_test_split(x_all_scaled_df, Y_all, test_size = test_size, random_state = seed) reg_OLS_all = LinearRegression(normalize=True).fit(X_train_all, Y_train_all)
reg_LassoCV_all = LassoCV(normalize=True)
reg_LassoCV_all.fit(X_train_all,Y_train_all) predict(reg_OLS_all, X_test_all, Y_test_all)

predict(reg_LassoCV_all, X_test_all, Y_test_all)

We can see that regularized OLS gives better prediction accuracy than OLS model, mainly because we selecte all 108 IVs (nearly equals 140, the number of train sets). Thus, the trained model meet the overfitting problem, and LASSO solve it well.

Conclusion

  • When there are many attributes, be alarm as the traditional Regression model may meet overfitting problem(However, other models such as Decision Tree, Random Forest, Gradient Boosting and so on can solve it easily)
  • We have to strike a balance between variance and (inductive) bias: our model needs to have sufficient complexity to model the relationship between the predictors and the response, but it must not fit the idiosyncrasies of our training data.
  • Idiosyncrasies which limit the model's ability to generalize (as measured by the testing error).

Further more

We can try various models (such as XGBoost Model, Support Vector Machine, Random Forest, ...) on this dataset, and let's leave it as this blog's homework.

Reference

Predict Referendum by sklearn package的更多相关文章

  1. sklearn pipeline

    sklearn.pipeline pipeline的目的将许多算法模型串联起来,比如将特征提取.归一化.分类组织在一起形成一个典型的机器学习问题工作流. 优点: 1.直接调用fit和predict方法 ...

  2. 探索sklearn | K均值聚类

    1 K均值聚类 K均值聚类是一种非监督机器学习算法,只需要输入样本的特征 ,而无需标记. K均值聚类首先需要随机初始化K个聚类中心,然后遍历每一个样本,将样本归类到最近的一个聚类中,一个聚类中样本特征 ...

  3. 跟 Google 学 machineLearning [1] -- hello sklearn

    时至今日,我才发现 machineLearning 的应用门槛已经被降到了这么低,简直唾手可得.我实在找不到任何理由不对它进入深入了解.如标题,感谢 Google 为这项技术发展作出的贡献.当然,可能 ...

  4. sklearn—LinearRegression,Ridge,RidgeCV,Lasso线性回归模型简单使用

    线性回归 import sklearnfrom sklearn.linear_model import LinearRegression X= [[0, 0], [1, 2], [2, 4]] y = ...

  5. 机器学习总结-sklearn参数解释

    本文转自:lytforgood 机器学习总结-sklearn参数解释 实验数据集选取: 1分类数据选取 load_iris 鸢尾花数据集 from sklearn.datasets import lo ...

  6. sklearn调用分类算法的评价指标

    sklearn分类算法的评价指标调用#二分类问题的算法评价指标import numpy as npimport matplotlib.pyplot as pltimport pandas as pdf ...

  7. 机器学习实战 | SKLearn最全应用指南

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-det ...

  8. 用scikit-learn和pandas学习线性回归

    对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习 ...

  9. IRIS数据集的分析-数据挖掘和python入门-零门槛

    所有内容都在python源码和注释里,可运行! ########################### #说明: # 撰写本文的原因是,笔者在研究博文“http://python.jobbole.co ...

随机推荐

  1. Push rejected: Push to origin/master was rejected

    1.错误日志 : Maven projects need to be imported: Import Changes Enable Auto-Import : files committed: 初始 ...

  2. Django---框架简介和工程搭建

    Django框架 一.Django介绍 二.Django工程搭建 回到顶部 一.Django介绍 1.简介    Django的主要目的是简便.快速的开发数据库驱动的网站.它强调代码复用,多个组件可以 ...

  3. C# 字典Dictionary

    Dictionary<TKey, TValue> 泛型类提供了从一组键到一组值的映射.通过键来检索值的速度是非常快的,接近于 O(1),这是因为 Dictionary<TKey, T ...

  4. JavaScript Object中的函数assign

    Object函数提供了一个叫做assign的函数,用来合并多个对象. Object.assign(...): 你可以传递多个对象给该函数,这些对象中的自有且可枚举的属性,会被拷贝给第一个对象. var ...

  5. Wed Sep 19 20:48:46 CST 2018 WARN: Establishing SSL connection without server's identity verification is not recommended. According to MySQL 5.5.45+, 5.6.26+ and 5.7.6+ requirements SSL connection mus

    Wed Sep 19 20:48:46 CST 2018 WARN: Establishing SSL connection without server's identity verificatio ...

  6. 【ASP.NET Core】在CentOS上安装.NET Core运行时、部署到CentOS

    第一步:Add the dotnet product feed sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc ...

  7. html5 css折叠导航栏

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  8. 2017-2018-2 20155228 《网络对抗技术》 实验八:Web基础

    2017-2018-2 20155228 <网络对抗技术> 实验八:Web基础 1. 实践内容 1.1 Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET ...

  9. Java-对象及变量的并发访问小结

    1)多线程环境下,方法内的变量是线程安全的 2)多个线程同时处理一个实例,这个实例内的变量是不安全的 3)不同线程中注入同一个类的不同实例,实例中的变量是安全的 4)Synchronized获取到的锁 ...

  10. ABP入门系列之1——ABP总体介绍

    ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)”的简称. ASP.NET Boilerplate是一个用最佳实践和流行技术开发现代WEB应用程序的新起点, ...