Predict Referendum by sklearn package
Background
Last day we talk about Python Basics in Chinese. Today, we will do data analysis with python and explain in English(No zuo, no die. In this section, we will discuss prominent hypotheses that have been proposed to explain the EU referendum result and how we try to capture them in our empirical analysis.
In this topic, we try to find application of Regularization Linear Regression and Overfitting.
Overfitting: the model is already so complex that it fits the idiosyncrasies of our training data, idiosyncrasies which limit the model's ability to generalize (as measured by the testing error).

we will look at four broad groups of variables:
- EU exposure through immigration, trade and structural funds;
- local public service provision and fiscal consolidation;
- demography and education;
- economic structure, wages and unemployment.
Let's have a brief view of the data
We can use pandas package to load various data file, including stata file (ending with ".dta").
from pandas.io.stata import StataReader, StataWriter
import pandas as pd
stata_data = StataReader("referendum data.dta", convert_categoricals=False)
data = stata_data.read()# basic data
varlist = stata_data.varlist# variable list
value_labels = stata_data.value_labels() # labels/ description of data value
fmtlist = stata_data.fmtlist
variable_labels = stata_data.variable_labels()# labels/ description of the variables
var = [i for i in variable_labels]
var_label = [variable_labels[i] for i in variable_labels]
df_labels = pd.DataFrame({"variable": var, "variable_label": var_label})# we use DataFrame to see the formated table of variable labels
Then, we can see variables meaning each, and the labels include: Total votes of remain/leave, Region of the votes, Population 60 older growth (2001-2011), Population 60 older (2001), Median hourly pay (2005), Median hourly pay change (2005-2015), Non-EU migrant resident share (2001), Non-EU migrant resident growth (2001-2011), Change in low skilled labour force share (2001-2011), Unemployment rate (2015), Total economy EU dependence (2010), Total fiscal cuts (2010-2015), EU Structural Funds per capita (2013) and so on.
Variable selection analysis
Dependent variable(DV): we choose 'Pct_Remain' as our DV as it decide whether remain or leave
Independent variable(IV): we choose 'Region', 'pensionergrowth20012011', 'ResidentAge60plusshare',
'median_hourly_pay2005', 'median_hourly_pay_growth', 'NONEU_2001Migrantshare', 'NONEU_Migrantgrowth',
'unqualifiedsharechange', 'umemployment_rate_aps', 'Total_EconomyEU_dependence', 'TotalImpactFLWAAYR', 'eufundspercapitapayment13'Four types of IV:
- EU exposure through immigration('NONEU_2001Migrantshare', 'NONEU_Migrantgrowth'), trade and structural funds('eufundspercapitapayment13');
- Fiscal consolidation('TotalImpactFLWAAYR');
- demography('Region', 'pensionergrowth20012011', 'ResidentAge60plusshare', 'unqualifiedsharechange');
- economic structure('Total_EconomyEU_dependence'), wages('median_hourly_pay2005', 'median_hourly_pay_growth') and unemployment('umemployment_rate_aps').
IVs = ['Region', 'pensionergrowth20012011', 'ResidentAge60plusshare', 'median_hourly_pay2005', 'median_hourly_pay_growth', 'NONEU_2001Migrantshare', 'NONEU_Migrantgrowth', 'unqualifiedsharechange', 'umemployment_rate_aps', 'Total_EconomyEU_dependence', 'TotalImpactFLWAAYR', 'eufundspercapitapayment13']
df1 = pd.read_stata("referendum data.dta")
df1 = df1.set_index("id")# load the stata data into DataFrame format data (df1) directly.
df1.shape
(382, 109)
We can see the data has many attributes, and this lead problem to our model - overfitting and lacking generalization (generalize to new, unseen cases), we'll solve the problem next.
drop_list = list(set(var) - set(IVs) - {"id"} - {"Pct_Remain"})# to get our df including only selected attributes
df = df1.drop(drop_list, axis = 1)
df = df.dropna()
df.describe()# we can see the data has different magnitude(some less than 1, while some over 100, and one string type for "Region")
Encode the region
import warnings
warnings.filterwarnings("ignore",category=DeprecationWarning)
#Next, we use LabelEncoder().fit_transform to transform Region into norminal variable
from sklearn.preprocessing import LabelEncoder
df['Region'] = LabelEncoder().fit_transform(df['Region'])
df.describe()
Y = pd.DataFrame(df['Pct_Remain'])# we select x and Y out as the IV and DVs
x = df.drop('Pct_Remain', axis = 1)
x.head()# view the x
Standardise the X - varibales
#We see that magnitude of our variables are different, we need to standardise the X - variables
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(x)
scaled_x = scaler.transform(x)
x_scaled_df = pd.DataFrame({x.columns[i]: scaled_x[:,i] for i in range(12)})
x_scaled_df.head()
Split data into train set and test set
from sklearn.model_selection import train_test_split
seed = 2019
test_size = 0.20
X_train, X_test, Y_train, Y_test = train_test_split(x_scaled_df, y, test_size = test_size, random_state = seed)
Train Model
# Import a range of sklearn functions
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression, Lasso, LassoCV, RidgeCV, Ridge, ElasticNet
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.feature_selection import SelectFromModel
Fit an OLS linear model to the x and y
#Fit an OLS model to the data and view the coefficients
reg_OLS = LinearRegression(normalize=True).fit(X_train, Y_train)
coef = pd.Series(reg_OLS.coef_, index = x_scaled_df.columns)
print(coef)
To compare, we also choose Lasso model - A Regularization Technique
Fit a Lasso model - A Regularization Technique
Lasso model use alpha as the penalty parameter to solve overfitting problem.
LassoCV can be used to iteratively fit the alpha parameter. Try running this now and printing out the coeffs
reg_LassoCV = LassoCV(normalize=True)
reg_LassoCV.fit(X_train,Y_train)
print("Best alpha using built-in LassoCV: %f" % reg_LassoCV.alpha_)
print("Best score using built-in LassoCV: %f" %reg_LassoCV.score(X_train,Y_train))
coef = pd.Series(reg_LassoCV.coef_, index = x_scaled_df.columns)
print(coef)
%matplotlib inline
import matplotlib.pyplot as plt# let's see the coefficient in graph
imp_coef = coef.sort_values()
plt.rcParams['figure.figsize'] = (8.0, 10.0)
imp_coef.plot(kind = "barh")
plt.title("Feature importance using Lasso Model")
View accuracy of the model
There, we assume when "Pct_Remain" (percentage of those who choose remain) is less than 0.5, people choose to leave while over 0.5, remain.
from sklearn.metrics import *
def predict( model, X_test = X_test, Y_test = Y_test):
"""
Input: trained model, test_IVs(X) and test_DV(Y)
Output: accuracy of the model(as the assumption defines)
"""
Y_test_0_1 = [0 if i<50 else 1 for i in Y_test]
y_pred = model.predict(X_test)
predictions = [0 if i<50 else 1 for i in y_pred]
accuracy = accuracy_score(Y_test_0_1, predictions)
confusion_matrix1 = confusion_matrix(Y_test_0_1, predictions)
print(model)
print("Confusion matrix:\n"+str(confusion_matrix1))
return ("Accuracy: %.2f%%" % (accuracy * 100.0))
predict(reg_OLS, X_test, Y_test)
predict(reg_LassoCV, X_test, Y_test)
We can see that regularized OLS gives same result as OLS model, mainly because we selecte 12 IVs (far more less than 367 observations) by observation or experience. Thus, the train model doesn't meet the overfitting problem.
What if we choose all variables?
df1_all = df1.dropna()
Y_all = df1_all["Pct_Remain"]
X_all = df1_all.drop("Pct_Remain", axis = 1)
for i in X_all.columns:
X_all[i] = LabelEncoder().fit_transform(X_all[i])#Label Encoder
scaler = StandardScaler().fit(X_all)
scaled_x = scaler.transform(X_all)
x_all_scaled_df = pd.DataFrame({X_all.columns[i]: scaled_x[:,i] for i in range(len(X_all.columns))})#standardise X
seed = 2019
test_size = 0.20
X_train_all, X_test_all, Y_train_all, Y_test_all = train_test_split(x_all_scaled_df, Y_all, test_size = test_size, random_state = seed)
reg_OLS_all = LinearRegression(normalize=True).fit(X_train_all, Y_train_all)
reg_LassoCV_all = LassoCV(normalize=True)
reg_LassoCV_all.fit(X_train_all,Y_train_all)
predict(reg_OLS_all, X_test_all, Y_test_all)
predict(reg_LassoCV_all, X_test_all, Y_test_all)
We can see that regularized OLS gives better prediction accuracy than OLS model, mainly because we selecte all 108 IVs (nearly equals 140, the number of train sets). Thus, the trained model meet the overfitting problem, and LASSO solve it well.
Conclusion
- When there are many attributes, be alarm as the traditional Regression model may meet overfitting problem(However, other models such as Decision Tree, Random Forest, Gradient Boosting and so on can solve it easily)
- We have to strike a balance between variance and (inductive) bias: our model needs to have sufficient complexity to model the relationship between the predictors and the response, but it must not fit the idiosyncrasies of our training data.
- Idiosyncrasies which limit the model's ability to generalize (as measured by the testing error).
Further more
We can try various models (such as XGBoost Model, Support Vector Machine, Random Forest, ...) on this dataset, and let's leave it as this blog's homework.
Reference
Predict Referendum by sklearn package的更多相关文章
- sklearn pipeline
sklearn.pipeline pipeline的目的将许多算法模型串联起来,比如将特征提取.归一化.分类组织在一起形成一个典型的机器学习问题工作流. 优点: 1.直接调用fit和predict方法 ...
- 探索sklearn | K均值聚类
1 K均值聚类 K均值聚类是一种非监督机器学习算法,只需要输入样本的特征 ,而无需标记. K均值聚类首先需要随机初始化K个聚类中心,然后遍历每一个样本,将样本归类到最近的一个聚类中,一个聚类中样本特征 ...
- 跟 Google 学 machineLearning [1] -- hello sklearn
时至今日,我才发现 machineLearning 的应用门槛已经被降到了这么低,简直唾手可得.我实在找不到任何理由不对它进入深入了解.如标题,感谢 Google 为这项技术发展作出的贡献.当然,可能 ...
- sklearn—LinearRegression,Ridge,RidgeCV,Lasso线性回归模型简单使用
线性回归 import sklearnfrom sklearn.linear_model import LinearRegression X= [[0, 0], [1, 2], [2, 4]] y = ...
- 机器学习总结-sklearn参数解释
本文转自:lytforgood 机器学习总结-sklearn参数解释 实验数据集选取: 1分类数据选取 load_iris 鸢尾花数据集 from sklearn.datasets import lo ...
- sklearn调用分类算法的评价指标
sklearn分类算法的评价指标调用#二分类问题的算法评价指标import numpy as npimport matplotlib.pyplot as pltimport pandas as pdf ...
- 机器学习实战 | SKLearn最全应用指南
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-det ...
- 用scikit-learn和pandas学习线性回归
对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习 ...
- IRIS数据集的分析-数据挖掘和python入门-零门槛
所有内容都在python源码和注释里,可运行! ########################### #说明: # 撰写本文的原因是,笔者在研究博文“http://python.jobbole.co ...
随机推荐
- 存储过程中拼接sql并且参数化
ALTER PROCEDURE [dbo].[proc_test] ( ) = ' order by id desc ', @userid int, @stime datetime, @etime d ...
- asp.net 使用rabbitmq事例
本例asp.net 使用rabbitmq需求背景:为了提升用户体验,用户点击下单按钮,后台先做一些简单必要的操作,返回给用户一个友好提示(比如提示处理中,或者订单状态为处理中),然后发通过发消息给队列 ...
- mysql扩展性架构实践N库到2N 库的扩容,2变4、4变8
mysql扩展性架构实践N库到2N 库的扩容,2变4.4变8 http://geek.csdn.net/news/detail/5207058同城 沈剑 http://www.99cankao.com ...
- NABCD分析---校园服务
N(需求): 大学生活中,很多琐碎的小事浪费同学时间精力.我们的APP本着为同学服务的宗旨,解决生活中各方面的问题,同学们可以在APP上发布各种信息,例如兼职,二手买卖等等. A(做法): 用户打开A ...
- npm手册
npm现在都是随同NodeJS一起安装的包管理和分发工具,所以npm的安装,只要下载新版的nodejs已经集成了npm. 安装好了以后,直接输入npm或者npm help,会出来一些npm自带的命令. ...
- Docker:从头开始基于CentOS-Minimal安装Docker
基础环境:win10+vmware 14 一.CentOS-Minimal安装 虚拟机安装CentOS-Minimal的步骤不多说,网络选Net,硬件不需要的什么声卡打印机全都删掉没什么问题,然后ce ...
- cocos2d-x C++ 获取网络图片缓存并展示
#ifndef __HttpGetImg__ #define __HttpGetImg__ #include "cocos2d.h" #include "HttpRequ ...
- Python科学计算学习之高级数组(二)
代码性能和向量化 背景:Python是一种解释型的编程语言,基本的python代码不需要任何中间编译过程来得到机器代码,而是直接执行.而对于C.C++等编译性语言就需要在执行代码前将其编译为机器指令. ...
- iOS深浅拷贝
浅拷贝:你和你的影子,你改变,你的影子发生改变 深拷贝:你的克隆人,你改变,你的克隆人并不会发生变化 eg: NSString *string = @"我是一个小白鼠"; NSSt ...
- org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.shen.mapper.UserMapper.findById
org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.shen.mapper.Use ...