Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 11303   Accepted: 3520
Case Time Limit: 2000MS

Description

N children are sitting in a circle to play a game.

The children are numbered from 1 to N in clockwise order. Each of them has a card with a non-zero integer on it in his/her hand. The game starts from the K-th child, who tells all the others the integer on his card and jumps out of the
circle. The integer on his card tells the next child to jump out. Let A denote the integer. If A is positive, the next child will be the A-th child to the left. If A is negative, the next child will be the (−A)-th
child to the right.

The game lasts until all children have jumped out of the circle. During the game, the p-th child jumping out will get F(p) candies where F(p) is the number of positive integers that perfectly divide p.
Who gets the most candies?

Input

There are several test cases in the input. Each test case starts with two integers N (0 < N ≤ 500,000) and K (1 ≤ K ≤ N) on the first line. The next N lines contains the names of the children
(consisting of at most 10 letters) and the integers (non-zero with magnitudes within 108) on their cards in increasing order of the children’s numbers, a name and an integer separated by a single space in a line with no leading or trailing
spaces.

Output

Output one line for each test case containing the name of the luckiest child and the number of candies he/she gets. If ties occur, always choose the child who jumps out of the circle first.

Sample Input

4 2
Tom 2
Jack 4
Mary -1
Sam 1

Sample Output

Sam 3
这道题可以用线段树做,是很有趣的一道,用到了约瑟夫环和反素数表。反素数的定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4.如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数·在这道题中,要求的就是不超过n的最大反素数p,因为它的因数最多,即只要找出第p个跳出孩子的编号。另一个用到的是约瑟夫环公式,设跳出的小孩编号是k,当孩子拿的号码是正数A时,如果A=1,那么下个要跳出的编号是K,此时对应的A是1,那么可设起点编号是k-1,对应的A是0,则其通项公式是k=(k-1+A-1)%n+1;(这里采用先顺时针走A-1步,再顺时针走最后一步,是为了避免出现取余后结果是0的情况),如果A小于0,那么同理可以得到对应编号为0所对应的编号为k-1,采用先逆时针走-A-1,在顺时针走一步的方法,得到公式k=((k-1+A)%n+n)%n+1;注意这里的A对应的是最初原始排列的小孩手里拿的编号,是搜到的线段树的叶节点。
#include<stdio.h>
#include<string.h>
char s[500005][11];
int num[500005];
int a[37]={1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560,10080,15120,20160,25200,27720,45360,50400,  
55440,83160,110880,166320,221760,277200,332640,498960,500001};
int c[37]={1,2,3,4,6,8,9,10,12,16,18,20,24,30,32,36,40,48,60,64,72,80,84,90,96,100,108,120,128,144,160,168,180,192,200,1314521};
struct node
{
int l,r,pos;
}b[4*500005];
void build(int l,int r,int i)
{
int mid;
b[i].l=l;b[i].r=r;
if(l==r){
b[i].pos=1;return;
}
mid=(l+r)/2;
build(l,mid,i*2);
build(mid+1,r,i*2+1);
b[i].pos=b[i*2].pos+b[i*2+1].pos;
} int update(int pos,int i)
{
int mid;
if(b[i].l==b[i].r){
b[i].pos=0;return b[i].l;
}
b[i].pos--;
if(b[i*2].pos>=pos){
return update(pos,i*2);
}
else return update(pos-b[i*2].pos,i*2+1);
} int main()
{
int n,m,i,j,max,p,k,h;
while(scanf("%d%d",&n,&k)!=EOF)
{
memset(s,0,sizeof(s));
memset(num,0,sizeof(num));
build(1,n,1);
for(i=1;i<=n;i++){
scanf("%s%d",s[i],&num[i]);
}
i=1;
while(a[i]<=n){
i++;
}
max=c[i-1];
p=a[i-1];
for(i=1;i<=p;i++){
n--;
h=update(k,1);         //h是最初始孩子的编号,也是线段树的叶节点 
if(n==0)break;         //很重要! 
if(num[h]>0)
k=(k-1+num[h]-1)%n+1;
else k=((k-1+num[h])%n+n)%n+1;
//printf("%d\n",h);
}
printf("%s %d\n",s[h],max);
}
return 0;
}

Who Gets the Most Candies?的更多相关文章

  1. 【POJ2886】Who Gets the Most Candies?-线段树+反素数

    Time Limit: 5000MS Memory Limit: 131072K Case Time Limit: 2000MS Description N children are sitting ...

  2. poj 3159 Candies 差分约束

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 22177   Accepted: 5936 Descrip ...

  3. Who Gets the Most Candies?(线段树 + 反素数 )

    Who Gets the Most Candies? Time Limit:5000MS     Memory Limit:131072KB     64bit IO Format:%I64d &am ...

  4. poj---(2886)Who Gets the Most Candies?(线段树+数论)

    Who Gets the Most Candies? Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 10373   Acc ...

  5. poj3159 Candies(差分约束,dij+heap)

    poj3159 Candies 这题实质为裸的差分约束. 先看最短路模型:若d[v] >= d[u] + w, 则连边u->v,之后就变成了d[v] <= d[u] + w , 即d ...

  6. HDU 5127 Dogs' Candies

    Dogs' Candies Time Limit: 30000/30000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others) T ...

  7. C. Om Nom and Candies 巧妙优化枚举,将复杂度控制在10e6

    C. Om Nom and Candies 无线超大背包问题 #include <iostream> #include <cstdio> #include <cstrin ...

  8. POJ 3159 Candies (栈优化spfa)

    Candies 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/J Description During the kinderga ...

  9. POJ 3159 Candies(差分约束,最短路)

    Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 20067   Accepted: 5293 Descrip ...

  10. (poj)3159 Candies

    题目链接:http://poj.org/problem?id=3159 Description During the kindergarten days, flymouse was the monit ...

随机推荐

  1. 【Java基础】数组和算法

    数组和算法 查找算法 线性查找 ... 二分查找 二分查找要求数据结构是有序的. package com.parzulpan.java.ch03; /** * @Author : parzulpan ...

  2. 【C++】《C++ Primer 》第五章

    第五章 语句 一.简单语句 表达式语句:一个表达式末尾加上分号,就变成了表达式语句. 空语句:只有一个单独的分号,记得注释说明提高代码可读性. 复合语句(块):用花括号 {}包裹起来的语句和声明的序列 ...

  3. 剑指offer 面试题9.1:用两个队列实现栈

    题目描述 使用队列实现栈的下列操作:push(x) -- 元素 x 入栈:pop() -- 移除栈顶元素:top() -- 获取栈顶元素:empty() -- 返回栈是否为空: 编程思想 利用双队列实 ...

  4. 利用容器逃逸实现远程登录k8s集群节点

    某天, 某鱼说要吃瞄, 于是...... 李国宝:边缘计算k8s集群SuperEdge初体验 ​ zhuanlan.zhihu.com 图标 照着上一篇文章来说,我这边边缘计算集群有一堆节点. 每个节 ...

  5. Ubuntu安装Vivado

    Step1 安装必要的库文件: sudo apt install libncurses5 build-essential openjdk-11-jdk Step2 进入vivado的安装文件夹 sud ...

  6. 2.4V升5V芯片,8uA功耗,低功耗升压电路图

    2.4V升5V,可用于USB拔插充电,也可以用于把两节镍氢电池2.4V升压到5V,的固定输出稳压电压值,同时输出电流可达1A,0.5A等 首先是先说下0.5A的这款的话,是比较低功耗的,8uA左右的输 ...

  7. 关于java并发场景下,HttpServletRequst中session丢失问题

    使用场景: 在list数据进来之后使用安全数组    Lists.newCopyOnWriteArrayList() 进行了   parallelStream  并行处理,在接口中进行了登录者信息接口 ...

  8. kubernetes用户权限管理工具permission-manager

    Permission Manager Permission Manager是一个为Kubernetes RBAC和用户管理提供Web UI的项目,为Kubernetes权限管理提供友好的可视化界面. ...

  9. 手写Netty之多路复用Select小案例

    注意:本文只是将上文多路复用器Select.Poll.Epoll区别梳理中提出的概念与Netty中的步骤联系起来,方便后面回顾,代码中注释很多,对于大家来说如果不是怀有同样的目的,不一定有用. 单线程 ...

  10. 【转载】Linux中找不到ifconfig命令的解决方法

    ifconfig命令出错 ifconfig命令是设置或显示网络接口的程序,可以显示出我们机器的网卡信息,可是有些时候最小化安装CentOS等Linux发行版的时候会默认不安装ifconfig等命令,这 ...