牛客挑战赛39 D 牛牛的数学题 NTT FMT FWT
LINK:牛牛的数学题
题目看起来很不可做的样子。
但是 不难分析一下i,j之间的关系。
对于x=i|j且i&j==0, i,j一定是x的子集 我们可以暴力枚举子集来处理x这个数组。
考虑 x+k这个东西 对于一个y来说 x(0->y) k(0->y)容易发现这是一个NTT.
对于最外层^h 显然是FWT_xor 注意 FWT_xor 是 a0=a0+a1 a1=a0-a1.IFWT_xor a0=(a0+a1)>>1.a1=(a0-a1)>>1.
这点要熟记。
值得一提的是 题解在第一部中使用的是FMT不过我不会 所以暴力枚举子集了。
这里有一个trik 子集枚举是从大到小的 可以只枚举一半 这样可以优化一下复杂度。
3^17/2什么的 跑的还挺快。重要的一点:该取模的地方一定要取模 不然要调好久才能看出来。
const int MAXN=1<<17,G=3;
int n,lim,INV2,Q;
int mark[MAXN],rev[MAXN<<1];
int A[MAXN],B[MAXN],C[MAXN<<1],D[MAXN<<1],S[MAXN<<1];
inline void solve_AB()
{
S[0]=(ll)A[0]*B[0]%mod;
for(int i=1;i<lim;++i)
{
for(int j=i;j;j=i&(j-1))
{
if(mark[j]==i)break;
mark[j]=mark[i^j]=i;
S[i]=(S[i]+(ll)A[j]*B[i^j]+(ll)A[i^j]*B[j])%mod;
}
}
}
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
b=(ll)b*b%mod;p=p>>1;
}
return cnt;
}
inline void NTT(int *a,int op)
{
rep(1,lim-1,i)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int len=2;len<=lim;len=len<<1)
{
int mid=len>>1;
int wn=ksm(G,op==1?(mod-1)/len:mod-1-(mod-1)/len);
for(int j=0;j<lim;j+=len)
{
ll d=1;
for(int i=0;i<mid;++i)
{
int x=a[i+j],y=a[i+j+mid]*d%mod;
a[i+j]=(x+y)%mod;a[i+j+mid]=(x-y+mod)%mod;
d=d*wn%mod;
}
}
}
if(op==-1)
{
int INV=ksm(lim,mod-2);
rep(0,lim-1,i)a[i]=(ll)a[i]*INV%mod;
}
}
inline void solve_SC()
{
while(lim<=n+n)lim=lim<<1;
rep(1,lim-1,i)rev[i]=rev[i>>1]>>1|((i&1)?lim>>1:0);
NTT(S,1);NTT(C,1);
rep(0,lim-1,i)C[i]=(ll)C[i]*S[i]%mod;
NTT(C,-1);
}
inline void FWT_xor(int *a,int op)
{
for(int len=2;len<=lim;len=len<<1)
{
int mid=len>>1;
for(int j=0;j<lim;j+=len)
{
for(int i=0;i<mid;++i)
{
int x=a[i+j],y=a[i+j+mid];
if(op==1)a[i+j]=(x+y)%mod,a[i+j+mid]=(x-y+mod)%mod;
else a[i+j]=(ll)(x+y)*INV2%mod,a[i+j+mid]=(ll)(x-y+mod)*INV2%mod;
}
}
}
}
inline void solve_CD()
{
FWT_xor(C,1);FWT_xor(D,1);
rep(0,lim-1,i)D[i]=(ll)D[i]*C[i]%mod;
FWT_xor(D,-1);
}
int main()
{
freopen("1.in","r",stdin);
get(n);INV2=ksm(2,mod-2);
rep(0,n,i)get(A[i]);
rep(0,n,i)get(B[i]);
rep(0,n,i)get(C[i]);
rep(0,n,i)get(D[i]);
lim=1;while(lim<=n)lim=lim<<1;
solve_AB();
solve_SC();
solve_CD();
get(Q);
rep(1,Q,i)put(D[read()]);
return 0;
}
牛客挑战赛39 D 牛牛的数学题 NTT FMT FWT的更多相关文章
- 牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp
LINK:牛牛与序列 (牛客div1的E题怎么这么水... 还没D难. 定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_ ...
- 牛客练习赛39 B.选点
链接:https://ac.nowcoder.com/acm/contest/368/B 来源:牛客网 题目描述 有一棵n个节点的二叉树,1为根节点,每个节点有一个值wi.现在要选出尽量多的点. 对于 ...
- 牛客练习赛39 B:选点(二叉树遍历+LIS)
链接: https://ac.nowcoder.com/acm/contest/368/B 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K,其他语言262 ...
- 牛客挑战赛 30 A 小G数数
题目链接:https://ac.nowcoder.com/acm/contest/375/A 分析:我写的时候竟然把它当成了DP....... 还建了个结构体DP数组,保存一二位,不知道当时脑子在抽啥 ...
- 良心送分题(牛客挑战赛35E+虚树+最短路)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 给你一棵树,然后把这棵树复制\(k\)次,然后再添加\(m\)条边,然后给你起点和终点,问你起点到终点的最短路. 思路 由于将树复制\(k\) ...
- Luogu5611 Ynoi2013 D2T2/牛客挑战赛32F 最大子段和 分块、分治
传送门 之前一直咕着的,因为一些特殊的原因把这道题更掉算了-- 有一个对值域莫队+线段树的做法,复杂度\(O(n\sqrt{n} \log n)\)然而牛客机子实在太慢了没有希望(Luogu上精细实现 ...
- 牛客练习赛63 C 牛牛的揠苗助长 主席树 二分 中位数
LINK:牛牛的揠苗助长 题目很水 不过做法很多 想到一个近乎O(n)的做法 不过感觉假了 最后决定莽一个主席树 当然 平衡树也行. 容易想到 答案为ans天 那么一些点的有效增长项数为 ans%n. ...
- 牛客挑战赛30 小G砍树 树形dp
小G砍树 dfs两次, dp出每个点作为最后一个点的方案数. #include<bits/stdc++.h> #define LL long long #define fi first # ...
- 牛客挑战赛30D 小A的昆特牌(组合数学)
题面 传送门 题解 很容易写出一个暴力 \[\sum_{i=l}^r {i+n-1\choose n-1}{s-i+m\choose m}\] 即枚举选了多少个步兵,然后用插板法算出方案数 我们对这个 ...
随机推荐
- zabbix + grafana 展示
环境CentOS 7.5 一,grafana 安装. 1,配置yum源 cat > /etc/yum.repos.d/grafana.repo <<EOF [grafana] nam ...
- mac篇---iterm2的基本常用命令
标签 新建标签:command + t 关闭标签:command + w 切换标签:command + 数字 command + 左右方向键 切换全屏:command + enter 查找:comma ...
- 2.Unity3d常用按键
Unity3d常用按键和组合键: 1.鼠标左键:选中物体 2.鼠标中键:平移视角,和手型功能一样 3.鼠标右键:旋转观察角度 4.Alt+鼠标左键:旋转观察角度 5.Alt+鼠标右键:拉远拉近
- day78 通过axios实现数据请求
目录 一.axios提供http请求的两个常用方法 二.json 1.json数据的语法 2 js中提供json数据转化的方式 三 ajax 1 数据接口 2 ajax在jq和vue的不同使用 3 同 ...
- python实现二维码、条形码识别
环境: python 3.7 Win7 依赖包安装: pip install pillow pip install opencv-python pip install opencv-contrib-p ...
- JavaScript图形实例:Canvas API
1.Canvas概述 Canvas API(画布)用于在网页实时生成图像,并且可以操作图像内容,基本上它是一个可以用JavaScript操作的位图(bitmap). 要使用HTML5在浏览器窗口中绘制 ...
- scala 数据结构(三):元组Tuple
1 元组Tuple-元组的基本使用 基本介绍 元组也是可以理解为一个容器,可以存放各种相同或不同类型的数据. 说的简单点,就是将多个无关的数据封装为一个整体,称为元组, 最多的特点灵活,对数据没有过多 ...
- JVM 专题十九:垃圾回收(三)垃圾回收相关概念
1. System.gc()的理解 在默认情況下,通过System.gc()或者Runtime. getRuntime().gc()的调用,会显式触发Full GC,同时对老年代和新生代进行回收,尝试 ...
- tensorboard学习笔记
TensorBoard 默认是不会记录每个节点的用时.耗费的内存大小等这些信息的,那么如何才能在图上显示这些信息呢?关键就是如下这些代码,主要就是在 sess.run() 中加入 options 和 ...
- JavaWeb基础(day14_css)
css css样式种类 内部样式 在head标签中使用 <style>标签 行内样式 直接在标签中写style属性进行赋值,style属性的就相当于内部样式的{} 外部样式 单独写一个文件 ...