3. Linear Regression with Multiple Variables
前面还有一章主要讲解,基本的Linear Algebra线性代数的知识,都比较简单,这里就直接跳过了。
Speaker: Andrew Ng
1. Multiple featues
训练集的特征变成了多个,就是有多个的输入变量,对应一个
的输出变量,但仍然是线性的关系。

其中columns为 n 类特征,rows为 m 个samples,代表 i 个sample数据,
代表第 i 个sample数据的第 j 个特征的值。
接下来我们定义在多变量下的:
其中针对通常的情况认为为1,这里通过向量表示为:
那么
2. Gradient descent for multiple variable
下面来看一下多变量下梯度下降算法的定义:
Hypothesis :
Parameters : 共n+1个参数
Cost Function :
Gadient Descent :
Repeat {
simultaneously update for every
}
原来单变量的梯度下降算法与现在对变量的梯度下降算法比较,最关键的就是一定要同时进行更新。

3. Gradient descent in practice I : Feature Scaling
这部分主要讲解Feature Scaling特征尺度对于梯度下降算法的影响。

如果对于sample中的不同特征所处的范围差异很大,就像左图所示,那么使用梯度下降算法需要很长的时间才能找到局部最优解。
如果对于sample中的特征尺度进行数据标准化处理,例如把特征值处理到-1到1的范围内,那么梯度下降算法找寻局部最优解的时间就会大大减少。
在PPT中数据标准化的处理方法如下,,其中
是range (max-min) , 或者是
的标准差Standard Deviation.

其他的数据标准化处理搜索可以找到很多,这里
4. Gadient descent in pratice II : Learing rate
梯度下降:
怎样保证梯度下降算法是正确在运行的,如何去选择一个合适的Learning Rate。

梯度下降算法收敛所需要的迭代次数是根据不同的模型而不同,通过绘制代价函数和迭代次数的关系图,或是把代价函数的变化值同阈值作比较,例如0.001,来判断收敛。

梯度下降算法还受到Learnin rate的影响,如果过小,收敛速度会非常慢,需要迭代很多次,如果
过大,迭代可能使代价函数不收敛跳过局部最优值。
通常可以尝试以下的Learning rate: ..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...
5. Features and polynomial regression
这里讲解多项式回归。对于线性回归可能并不能应用到所有数据,有些模型可能需要曲线来进行回归。比如Quadratic二次或Cubic三次模型。
例如: 以及下图所示

我们可以令,这样又变成了线性回归模型。当采用梯度下降时候,要记得进行特征尺度变换。
6. Normal equation
Normal equation是从线性代数的角度来求解方程,找到代价函数最小的参数,即求解
即希望,那么我们的训练矩阵为
,训练集结果为
,那么可以进行如下推导:
(两边同乘以
化为方阵)
(两边同乘以
)
即。
这里需要注意的是,可能是奇异矩阵、不可逆矩阵,一般使用Matlab或Octave时候使用pinv伪逆来进行计算。
如果遇到不可逆,我们可以考虑精简特征表示,或者特征太多(m <= n) ,而sample比较少,那么考虑删除特征,或者采用Regularization方式。
下面是对梯度下降算法和Normal equation的方法进行对比:

| Gradient Descent | Normal Equation |
| 需要选择合适的Learning rate | 不需要设置参数 |
| 需要多次迭代Iteration | 一次运算得到结果 |
|
可以适用于特征数量n很大的情况 |
如果特征数量n很大,运算时间代价就会很大, 因为矩阵逆的计算时间复杂度为O(n^3) 通常来说对于n小于10000可以考虑使用Normal Equation |
|
适用于各种类型的模型 |
适用于线性模型,不适合逻辑回归模型或一些其他模型 |
参考:
http://files.cnblogs.com/gyj0715/courseramlnotes.pdf
http://www.cnblogs.com/elaron/archive/2013/05/20/3088894.html
3. Linear Regression with Multiple Variables的更多相关文章
- Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...
- Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...
- 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题 如果有多个特征值 那么这种情况下 假设h表示 ...
- 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归
Gradient Descent for Multiple Variables [1]多变量线性模型 代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- 机器学习之多变量线性回归(Linear Regression with multiple variables)
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...
- ML:多变量代价函数和梯度下降(Linear Regression with Multiple Variables)
代价函数cost function 公式: 其中,变量θ(Rn+1或者R(n+1)*1) 向量化: Octave实现: function J = computeCost(X, y, theta) %C ...
- 机器学习笔记-1 Linear Regression with Multiple Variables(week 2)
1. Multiple Features note:X0 is equal to 1 2. Feature Scaling Idea: make sure features are on a simi ...
- 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...
- #Week3 Linear Regression with Multiple Variables
一.Multiple Features 这节课主要引入了一些记号,假设现在有n个特征,那么: 为了便于用矩阵处理,令\(x_0=1\): 参数\(\theta\)是一个(n+1)*1维的向量,任一个训 ...
随机推荐
- 【Flutter】功能型组件之跨组件状态共享
前言 在Flutter开发中,状态管理是一个永恒的话题. 一般的原则是:如果状态是组件私有的,则应该由组件自己管理:如果状态要跨组件共享,则该状态应该由各个组件共同的父元素来管理. 对于组 ...
- SpringBoot配置文件(1)
配置文件 1.配置文件 SpringBoot使用一个全局的配置文件 application.properties application.yml 配置文件名是固定的: 他的作用是修改SpringBoo ...
- Java并发编程实战(5)- 线程生命周期
在这篇文章中,我们来聊一下线程的生命周期. 目录 概述 操作系统中的线程生命周期 Java中的线程生命周期 Java线程状态转换 运行状态和阻塞状态之间的转换 运行状态和无时限等待状态的切换 运行状态 ...
- Docker Java 镜像基础(四)
基于官方提供的centos 7.2.1511 基础镜像构建JDK 和tomcat 镜像,先构建JDK镜像,然后在基于JDK镜像构建tomcat镜像 构建 centos:latest 基础镜像: # 下 ...
- CSS 奇思妙想边框动画
今天逛博客网站 -- shoptalkshow,看到这样一个界面,非常有意思: 觉得它的风格很独特,尤其是其中一些边框. 嘿嘿,所以来一篇边框特辑,看看运用 CSS,可以在边框上整些什么花样. bor ...
- 【Web】CSS实现鼠标悬停实现显示与隐藏 特效
鼠标悬停实现显示与隐藏特效 简单记录 - 慕课网 Web前端 步骤四:鼠标悬停实现显示与隐藏特效 初步掌握定位的基本使用,以及CSS选择器更高级的运用,完成一个网页中必会的鼠标经过隐藏显示特效. 实现 ...
- kubernets之pod的标签
一 如何查看pod 的日志 1 通过执行命令查看日志信息 kubectl logs pod_name 二 创建带有标签的pod,一个范例的pod创建yaml文件如下所示 2.1 创建带有 ...
- 命名秘籍周获近五千星——GitHub 热点速览 v.21.04
作者:HelloGitHub-小鱼干 命名一直是编程界的难点,这次 naming-cheatsheet 就能帮上你的忙.按照它的 SID(Short..Intuitive.Descriptive)原则 ...
- linux在终端中按下键盘立马反应
想在终端中做个小应用,按下上下左右键能立刻作出反应. 测试程序见下: 1 #include <stdio.h> 2 #include <unistd.h> 3 #include ...
- 大促密集,CDN如何保障电商体验如丝般顺滑?
简介: 前不久,阿里云技术天团空降CSDN在线峰会,对核心技术竞争力进行解读.其中,阿里云高级技术专家曾福华分享了<双11: CDN如何保障电商大促如丝般顺滑>的议题.俗话说:养兵千日,用 ...