Intersection of Two Prisms(AOJ 1313)
- 原题如下:
Suppose that P1 is an infinite-height prism whose axis is parallel to the z-axis, and P2 is also an infinite-height prism whose axis is parallel to the y-axis. P1 is defined by the polygon C1 which is the cross section of P1 and the xy-plane, and P2is also defined by the polygon C2 which is the cross section of P2 and the xz-plane.
Figure I.1 shows two cross sections which appear as the first dataset in the sample input, and Figure I.2 shows the relationship between the prisms and their cross sections.
Figure I.1: Cross sections of Prisms
Figure I.2: Prisms and their cross sections
Figure I.3: Intersection of two prisms
Figure I.3 shows the intersection of two prisms in Figure I.2, namely, P1 and P2.
Write a program which calculates the volume of the intersection of two prisms.
Input
The input is a sequence of datasets. The number of datasets is less than 200.
Each dataset is formatted as follows.
m n
x11 y11
x12 y12
.
.
.
x1m y1m
x21 z21
x22 z22
.
.
.
x2n z2nm and n are integers (3 ≤ m ≤ 100, 3 ≤ n ≤ 100) which represent the numbers of the vertices of the polygons, C1 and C2, respectively.
x1i, y 1 i, x 2j and z 2j are integers between -100 and 100, inclusive. ( x 1i, y 1i) and ( x 2j , z 2j) mean the i-th and j-th vertices' positions of C 1 and C 2respectively.
The sequences of these vertex positions are given in the counterclockwise order either on the xy-plane or the xz-plane as in Figure I.1.
You may assume that all the polygons are convex, that is, all the interior angles of the polygons are less than 180 degrees. You may also assume that all the polygons are simple, that is, each polygon's boundary does not cross nor touch itself.
The end of the input is indicated by a line containing two zeros.
Output
For each dataset, output the volume of the intersection of the two prisms, P1 and P2, with a decimal representation in a line.
None of the output values may have an error greater than 0.001. The output should not contain any other extra characters.
Sample Input
4 3
7 2
3 3
0 2
3 1
4 2
0 1
8 1
4 4
30 2
30 12
2 12
2 2
15 2
30 8
13 14
2 8
8 5
13 5
21 7
21 9
18 15
11 15
6 10
6 8
8 5
10 12
5 9
15 6
20 10
18 12
3 3
5 5
10 3
10 10
20 8
10 15
10 8
4 4
-98 99
-99 -99
99 -98
99 97
-99 99
-98 -98
99 -99
96 99
0 0Output for the Sample Input
4.708333333333333
1680.0000000000005
491.1500000000007
0.0
7600258.4847715655 - 题解:朴素想法,求出公共部分的凸多面体的顶点坐标,然后再计算其体积。公共部分的凸多面体的顶点都是一个棱柱的侧面与另一个棱柱的侧棱的交点,可以通过O(nm)时间的枚举求得,但因为涉及三维空间的几何运算,实现起来是非常麻烦的。
事实上,沿x轴对棱柱切片即可:按某个值对侧棱与z轴平行的棱柱P1切片后,就得到了[y1,y2]*(-∞,∞)这样的在z轴方向无限延伸的长方形的横截面,同样的,我们按某个x值对侧棱与y轴平行的棱柱P2切片后,就得到了(-∞,∞)*[z1,z2]这样的在y轴方向无限延伸的长方形的横截面。因此,我们按某个x值对两个棱柱的公共部分切片后,得到的横截面就是长方形[y1,y2]*[z1,z2]。而长方形的面积通过(y2-y1)*(z2-z1)就可以求得,关于x轴对面积求积分就能得到公共部分的体积了。
首先,枚举出原棱柱底面顶点的所有x坐标并排序,在相邻两个x坐标之间的区间中按x值切片得到的长方形的顶点坐标是关于x的线性函数,所以面积就是关于x的二次函数,其积分很容易计算,虽然可以通过求得表达式后再来计算二次函数的积分,但应用Simpson公式则更为轻松。Simpson公式如下:
Simpson公式就是在数值积分中用二次函数来近似原函数进行积分而得到的公式,如果原函数本身就是次数不超过二的多项式,那么用Simpson公式就可以得到精确的积分值。利用该公式,无需求出关于x的多项式,而只要计算按区间的端点和中点切片得到的长方形的面积就够了。
- 代码:
#include<cstdio>
#include<algorithm>
#include<vector> using namespace std; const int INF=0x3f3f3f3f;
const double EPS=1e-;
const int MAX_N=;
int N,M;
int X1[MAX_N], Y1[MAX_N], X2[MAX_N], Z2[MAX_N]; double max(double x, double y)
{
if (x>y+EPS) return x;
return y;
} double min(double x, double y)
{
if (x<y-EPS) return x;
return y;
} double width(int * X, int * Y, int n, double x)
{
double lb=INF, ub=-INF;
for (int i=; i<n; i++)
{
double x1=X[i], y1=Y[i], x2=X[(i+)%n], y2=Y[(i+)%n];
if ((x1-x)*(x2-x)<= && x1!=x2)
{
double y=y1+(y2-y1)*(x-x1)/(x2-x1);
lb=min(lb, y);
ub=max(ub, y);
}
}
return max(0.0, ub-lb);
} int main()
{
while (~scanf("%d %d", &M, &N))
{
if (M== && N==) break;
for (int i=; i<M; i++)
{
scanf("%d %d", &X1[i], &Y1[i]);
}
for (int i=; i<N; i++)
{
scanf("%d %d", &X2[i], &Z2[i]);
}
int min1=*min_element(X1, X1+M), max1=*max_element(X1, X1+M);
int min2=*min_element(X2, X2+N), max2=*max_element(X2, X2+N);
vector<int> xs;
for (int i=; i<M; i++) xs.push_back(X1[i]);
for (int i=; i<N; i++) xs.push_back(X2[i]);
sort(xs.begin(), xs.end());
double res=;
for (int i=; i+<xs.size(); i++)
{
double a=xs[i], b=xs[i+], c=(a+b)/;
if (min1<=c && c<=max1 && min2<=c && c<=max2)
{
double fa=width(X1, Y1, M, a)*width(X2, Z2, N, a);
double fb=width(X1, Y1, M, b)*width(X2, Z2, N, b);
double fc=width(X1, Y1, M, c)*width(X2, Z2, N, c);
res+=(b-a)/*(fa+*fc+fb);
}
}
printf("%.10f\n", res);
}
}
Intersection of Two Prisms(AOJ 1313)的更多相关文章
- UVALive 5075 Intersection of Two Prisms(柱体体积交)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- [LeetCode] Intersection of Two Arrays II 两个数组相交之二
Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...
- [LeetCode] Intersection of Two Arrays 两个数组相交
Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...
- [LeetCode] Intersection of Two Linked Lists 求两个链表的交点
Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...
- 【leetcode】Intersection of Two Linked Lists
题目简述: Write a program to find the node at which the intersection of two singly linked lists begins. ...
- AOJ 0121: Seven Puzzle【BFS】
From: AOJ 0121 思路:与前几题的bfs不同,这次的bfs没有明确的移动对象,看似任意一个数都可以当成对象移动.这时我们只需要抓住一个格子就行,比如我们把0作为移动对象,那么0在地图中漫游 ...
- [LintCode] Intersection of Two Linked Lists 求两个链表的交点
Write a program to find the node at which the intersection of two singly linked lists begins. Notice ...
- LeetCode Intersection of Two Arrays
原题链接在这里:https://leetcode.com/problems/intersection-of-two-arrays/ 题目: Given two arrays, write a func ...
- AOJ DSL_2_C Range Search (kD Tree)
Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...
随机推荐
- C#算法设计排序篇之10-桶排序(附带动画演示程序)
桶排序(Bucket Sort) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/693 访问. 桶排序的工作原理是将数组 ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- 【HDU3038】How Many Answers Are Wrong - 带权并查集
描述 TT and FF are ... friends. Uh... very very good friends -________-b FF is a bad boy, he is always ...
- TfidfVectorizer、CountVectorizer 和 TfidfTransformer 的简单教程
TfidfVectorizer.CountVectorizer 和 TfidfTransformer 是 sklearn 中处理自然语言常用的工具.TfidfVectorizer 相当于 CountV ...
- QT下载速度慢的解决方法
在官网的下载速度实在太慢了 找到了一个镜像网站 https://mirrors.tuna.tsinghua.edu.cn/qt/archive/qt/
- 关于tomcat的一些基础知识
tomcat的启动环境是要需要配置jdk的,本次示例用的是jdk1.8和tomcat 8.5. jdk环境变量配置可以在网上随意找到,这里就不再作示范了. 什么是Tomcat Tomcat简单的说就是 ...
- Jmeter 常用函数(15)- 详解 __StringFromFile
如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.htm 作用 从文本文件读取字符串,每次一行 需要注意 ...
- windows操作报错:无法启动此程序,因为计算机中丢失api-ms-win-core-winrt-string-l1-1-0.dll
在Windows上做提交svn操作时报错:无法启动此程序,因为计算机中丢失api-ms-win-core-winrt-string-l1-1-0.dll,如下图: 解决办法: 在 https://cn ...
- 操作系统-I/O(2)设备的分配
作业执行前对设备提出申请时,指定某台具体的物理设备会让设备分配变得简单,但如果所指定设备出现故障,即便计算机系统中有同类设备也不能运行 设备独立性:用户通常不指定物理设备,而是指定逻辑设备,使得用户作 ...
- 区块链入门到实战(30)之Solidity – 基础语法
一个 Solidity 源文件可以包含任意数量的合约定义.import指令和pragma指令. 让我们从一个简单的 Solidity 源程序开始.下面是一个 Solidity 源文件的例子: prag ...