• 原题如下:

    Suppose that P1 is an infinite-height prism whose axis is parallel to the z-axis, and P2 is also an infinite-height prism whose axis is parallel to the y-axis. P1 is defined by the polygon C1 which is the cross section of P1 and the xy-plane, and P2is also defined by the polygon C2 which is the cross section of P2 and the xz-plane.

    Figure I.1 shows two cross sections which appear as the first dataset in the sample input, and Figure I.2 shows the relationship between the prisms and their cross sections.

    Figure I.1: Cross sections of Prisms

    Figure I.2: Prisms and their cross sections

    Figure I.3: Intersection of two prisms

    Figure I.3 shows the intersection of two prisms in Figure I.2, namely, P1 and P2.

    Write a program which calculates the volume of the intersection of two prisms.

    Input

    The input is a sequence of datasets. The number of datasets is less than 200.

    Each dataset is formatted as follows.

    m n
    x11 y11
    x12 y12 
    .
    .
    .
    x1m y1m 
    x21 z21
    x22 z22
    .
    .
    .
    x2n z2n

    m and n are integers (3 ≤ m ≤ 100, 3 ≤ n ≤ 100) which represent the numbers of the vertices of the polygons, C1 and C2, respectively.

    x1iy 1 ix 2j and z 2j are integers between -100 and 100, inclusive. ( x 1iy 1i) and ( x 2j , z 2j) mean the i-th and j-th vertices' positions of C 1 and C 2respectively.

    The sequences of these vertex positions are given in the counterclockwise order either on the xy-plane or the xz-plane as in Figure I.1.

    You may assume that all the polygons are convex, that is, all the interior angles of the polygons are less than 180 degrees. You may also assume that all the polygons are simple, that is, each polygon's boundary does not cross nor touch itself.

    The end of the input is indicated by a line containing two zeros.

    Output

    For each dataset, output the volume of the intersection of the two prisms, P1 and P2, with a decimal representation in a line.

    None of the output values may have an error greater than 0.001. The output should not contain any other extra characters.

    Sample Input

    4 3
    7 2
    3 3
    0 2
    3 1
    4 2
    0 1
    8 1
    4 4
    30 2
    30 12
    2 12
    2 2
    15 2
    30 8
    13 14
    2 8
    8 5
    13 5
    21 7
    21 9
    18 15
    11 15
    6 10
    6 8
    8 5
    10 12
    5 9
    15 6
    20 10
    18 12
    3 3
    5 5
    10 3
    10 10
    20 8
    10 15
    10 8
    4 4
    -98 99
    -99 -99
    99 -98
    99 97
    -99 99
    -98 -98
    99 -99
    96 99
    0 0

    Output for the Sample Input

    4.708333333333333
    1680.0000000000005
    491.1500000000007
    0.0
    7600258.4847715655
  • 题解:朴素想法,求出公共部分的凸多面体的顶点坐标,然后再计算其体积。公共部分的凸多面体的顶点都是一个棱柱的侧面与另一个棱柱的侧棱的交点,可以通过O(nm)时间的枚举求得,但因为涉及三维空间的几何运算,实现起来是非常麻烦的。
    事实上,沿x轴对棱柱切片即可:按某个值对侧棱与z轴平行的棱柱P1切片后,就得到了[y1,y2]*(-∞,∞)这样的在z轴方向无限延伸的长方形的横截面,同样的,我们按某个x值对侧棱与y轴平行的棱柱P2切片后,就得到了(-∞,∞)*[z1,z2]这样的在y轴方向无限延伸的长方形的横截面。因此,我们按某个x值对两个棱柱的公共部分切片后,得到的横截面就是长方形[y1,y2]*[z1,z2]。而长方形的面积通过(y2-y1)*(z2-z1)就可以求得,关于x轴对面积求积分就能得到公共部分的体积了。
    首先,枚举出原棱柱底面顶点的所有x坐标并排序,在相邻两个x坐标之间的区间中按x值切片得到的长方形的顶点坐标是关于x的线性函数,所以面积就是关于x的二次函数,其积分很容易计算,虽然可以通过求得表达式后再来计算二次函数的积分,但应用Simpson公式则更为轻松。Simpson公式如下:

    Simpson公式就是在数值积分中用二次函数来近似原函数进行积分而得到的公式,如果原函数本身就是次数不超过二的多项式,那么用Simpson公式就可以得到精确的积分值。利用该公式,无需求出关于x的多项式,而只要计算按区间的端点和中点切片得到的长方形的面积就够了。

  • 代码:
    #include<cstdio>
    #include<algorithm>
    #include<vector> using namespace std; const int INF=0x3f3f3f3f;
    const double EPS=1e-;
    const int MAX_N=;
    int N,M;
    int X1[MAX_N], Y1[MAX_N], X2[MAX_N], Z2[MAX_N]; double max(double x, double y)
    {
    if (x>y+EPS) return x;
    return y;
    } double min(double x, double y)
    {
    if (x<y-EPS) return x;
    return y;
    } double width(int * X, int * Y, int n, double x)
    {
    double lb=INF, ub=-INF;
    for (int i=; i<n; i++)
    {
    double x1=X[i], y1=Y[i], x2=X[(i+)%n], y2=Y[(i+)%n];
    if ((x1-x)*(x2-x)<= && x1!=x2)
    {
    double y=y1+(y2-y1)*(x-x1)/(x2-x1);
    lb=min(lb, y);
    ub=max(ub, y);
    }
    }
    return max(0.0, ub-lb);
    } int main()
    {
    while (~scanf("%d %d", &M, &N))
    {
    if (M== && N==) break;
    for (int i=; i<M; i++)
    {
    scanf("%d %d", &X1[i], &Y1[i]);
    }
    for (int i=; i<N; i++)
    {
    scanf("%d %d", &X2[i], &Z2[i]);
    }
    int min1=*min_element(X1, X1+M), max1=*max_element(X1, X1+M);
    int min2=*min_element(X2, X2+N), max2=*max_element(X2, X2+N);
    vector<int> xs;
    for (int i=; i<M; i++) xs.push_back(X1[i]);
    for (int i=; i<N; i++) xs.push_back(X2[i]);
    sort(xs.begin(), xs.end());
    double res=;
    for (int i=; i+<xs.size(); i++)
    {
    double a=xs[i], b=xs[i+], c=(a+b)/;
    if (min1<=c && c<=max1 && min2<=c && c<=max2)
    {
    double fa=width(X1, Y1, M, a)*width(X2, Z2, N, a);
    double fb=width(X1, Y1, M, b)*width(X2, Z2, N, b);
    double fc=width(X1, Y1, M, c)*width(X2, Z2, N, c);
    res+=(b-a)/*(fa+*fc+fb);
    }
    }
    printf("%.10f\n", res);
    }
    }

Intersection of Two Prisms(AOJ 1313)的更多相关文章

  1. UVALive 5075 Intersection of Two Prisms(柱体体积交)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  2. [LeetCode] Intersection of Two Arrays II 两个数组相交之二

    Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...

  3. [LeetCode] Intersection of Two Arrays 两个数组相交

    Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...

  4. [LeetCode] Intersection of Two Linked Lists 求两个链表的交点

    Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...

  5. 【leetcode】Intersection of Two Linked Lists

    题目简述: Write a program to find the node at which the intersection of two singly linked lists begins. ...

  6. AOJ 0121: Seven Puzzle【BFS】

    From: AOJ 0121 思路:与前几题的bfs不同,这次的bfs没有明确的移动对象,看似任意一个数都可以当成对象移动.这时我们只需要抓住一个格子就行,比如我们把0作为移动对象,那么0在地图中漫游 ...

  7. [LintCode] Intersection of Two Linked Lists 求两个链表的交点

    Write a program to find the node at which the intersection of two singly linked lists begins. Notice ...

  8. LeetCode Intersection of Two Arrays

    原题链接在这里:https://leetcode.com/problems/intersection-of-two-arrays/ 题目: Given two arrays, write a func ...

  9. AOJ DSL_2_C Range Search (kD Tree)

    Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...

随机推荐

  1. 旧 WCF 项目迁移到 asp.net core + gRPC 的尝试

    一个月前,公司的运行WCF的windows服务器down掉了,由于 AWS 没有通知,没有能第一时间发现问题. 所以,客户提出将WCF服务由C#改为JAVA,在Linux上面运行:一方面,AWS对Li ...

  2. 阿里云体验实验室 教你如何《快速搭建LNMP环境》

    ## 体验平台简介 面向开发者和中小企业打造的一站式.全云端的开发平台,打开浏览器就可以开发.调试.上线,所测即所得,并结合无服务器的模式,重新定义云原生时代的研发工作方法论.旨在降低开发者上手成本和 ...

  3. python3中文输出乱码的问题

    最近使用you-get这个工具下载视频,发现命令行窗口里显示的媒体标题是乱码(但文件管理器里显示正常).我的命令行窗口的code page是936,sys.stdout.encoding是utf-8, ...

  4. eric4 中pyqt 字符串 输入 获取

    在eric4中使用pyqt需要注意: 输入 中文 时,前面加 u ,例如: from PyQt4.QtGui import * from PyQt4.QtCore import * QMessageB ...

  5. 本blog的地图

    欢迎 CTRL+F收索 / CTRL+D    持续更新 C++: C++快速排序 C++归并排序 高精度 CSS: CSS实现ps基础操作 PYTHON: python爬虫教程,一篇就够了 其他推荐 ...

  6. Spring Security-获取当前登录用户的详细信息

    在Spring框架里面,可以通过以下几种方式获取到当前登录用户的详细信息: 1. 在Bean中获取用户信息 Authentication authentication = SecurityContex ...

  7. SparkStreaming-DStream(Discretized Stream)

    DStream(Discretized Stream)离散流 ◆ 和Spark基于RDD的概念很相似,Spark Streaming使用离散流 (discretized stream)作为抽象表示,叫 ...

  8. IA-32/centos7开机流程

    开机后系统首先在实地址模式下工作(只有1MB的寻址空间) 开机过程中,需要先准备在实模式下的中断向量表和中断服务程序.通常,由固化在主板上一块ROM芯片中的BIOS程序完成 加载BIOS的硬件信息,B ...

  9. springboot整合druid监控配置

    方式一:直接引入druid 1.maven坐标 <dependency> <groupId>com.alibaba</groupId> <artifactId ...

  10. ondyari / FaceForensics配置指南

    https://github.com/ondyari/FaceForensics 安装配置方法: $ git clone https://github.com/ondyari/FaceForensic ...