• 原题如下:

    Suppose that P1 is an infinite-height prism whose axis is parallel to the z-axis, and P2 is also an infinite-height prism whose axis is parallel to the y-axis. P1 is defined by the polygon C1 which is the cross section of P1 and the xy-plane, and P2is also defined by the polygon C2 which is the cross section of P2 and the xz-plane.

    Figure I.1 shows two cross sections which appear as the first dataset in the sample input, and Figure I.2 shows the relationship between the prisms and their cross sections.

    Figure I.1: Cross sections of Prisms

    Figure I.2: Prisms and their cross sections

    Figure I.3: Intersection of two prisms

    Figure I.3 shows the intersection of two prisms in Figure I.2, namely, P1 and P2.

    Write a program which calculates the volume of the intersection of two prisms.

    Input

    The input is a sequence of datasets. The number of datasets is less than 200.

    Each dataset is formatted as follows.

    m n
    x11 y11
    x12 y12 
    .
    .
    .
    x1m y1m 
    x21 z21
    x22 z22
    .
    .
    .
    x2n z2n

    m and n are integers (3 ≤ m ≤ 100, 3 ≤ n ≤ 100) which represent the numbers of the vertices of the polygons, C1 and C2, respectively.

    x1iy 1 ix 2j and z 2j are integers between -100 and 100, inclusive. ( x 1iy 1i) and ( x 2j , z 2j) mean the i-th and j-th vertices' positions of C 1 and C 2respectively.

    The sequences of these vertex positions are given in the counterclockwise order either on the xy-plane or the xz-plane as in Figure I.1.

    You may assume that all the polygons are convex, that is, all the interior angles of the polygons are less than 180 degrees. You may also assume that all the polygons are simple, that is, each polygon's boundary does not cross nor touch itself.

    The end of the input is indicated by a line containing two zeros.

    Output

    For each dataset, output the volume of the intersection of the two prisms, P1 and P2, with a decimal representation in a line.

    None of the output values may have an error greater than 0.001. The output should not contain any other extra characters.

    Sample Input

    4 3
    7 2
    3 3
    0 2
    3 1
    4 2
    0 1
    8 1
    4 4
    30 2
    30 12
    2 12
    2 2
    15 2
    30 8
    13 14
    2 8
    8 5
    13 5
    21 7
    21 9
    18 15
    11 15
    6 10
    6 8
    8 5
    10 12
    5 9
    15 6
    20 10
    18 12
    3 3
    5 5
    10 3
    10 10
    20 8
    10 15
    10 8
    4 4
    -98 99
    -99 -99
    99 -98
    99 97
    -99 99
    -98 -98
    99 -99
    96 99
    0 0

    Output for the Sample Input

    4.708333333333333
    1680.0000000000005
    491.1500000000007
    0.0
    7600258.4847715655
  • 题解:朴素想法,求出公共部分的凸多面体的顶点坐标,然后再计算其体积。公共部分的凸多面体的顶点都是一个棱柱的侧面与另一个棱柱的侧棱的交点,可以通过O(nm)时间的枚举求得,但因为涉及三维空间的几何运算,实现起来是非常麻烦的。
    事实上,沿x轴对棱柱切片即可:按某个值对侧棱与z轴平行的棱柱P1切片后,就得到了[y1,y2]*(-∞,∞)这样的在z轴方向无限延伸的长方形的横截面,同样的,我们按某个x值对侧棱与y轴平行的棱柱P2切片后,就得到了(-∞,∞)*[z1,z2]这样的在y轴方向无限延伸的长方形的横截面。因此,我们按某个x值对两个棱柱的公共部分切片后,得到的横截面就是长方形[y1,y2]*[z1,z2]。而长方形的面积通过(y2-y1)*(z2-z1)就可以求得,关于x轴对面积求积分就能得到公共部分的体积了。
    首先,枚举出原棱柱底面顶点的所有x坐标并排序,在相邻两个x坐标之间的区间中按x值切片得到的长方形的顶点坐标是关于x的线性函数,所以面积就是关于x的二次函数,其积分很容易计算,虽然可以通过求得表达式后再来计算二次函数的积分,但应用Simpson公式则更为轻松。Simpson公式如下:

    Simpson公式就是在数值积分中用二次函数来近似原函数进行积分而得到的公式,如果原函数本身就是次数不超过二的多项式,那么用Simpson公式就可以得到精确的积分值。利用该公式,无需求出关于x的多项式,而只要计算按区间的端点和中点切片得到的长方形的面积就够了。

  • 代码:
    #include<cstdio>
    #include<algorithm>
    #include<vector> using namespace std; const int INF=0x3f3f3f3f;
    const double EPS=1e-;
    const int MAX_N=;
    int N,M;
    int X1[MAX_N], Y1[MAX_N], X2[MAX_N], Z2[MAX_N]; double max(double x, double y)
    {
    if (x>y+EPS) return x;
    return y;
    } double min(double x, double y)
    {
    if (x<y-EPS) return x;
    return y;
    } double width(int * X, int * Y, int n, double x)
    {
    double lb=INF, ub=-INF;
    for (int i=; i<n; i++)
    {
    double x1=X[i], y1=Y[i], x2=X[(i+)%n], y2=Y[(i+)%n];
    if ((x1-x)*(x2-x)<= && x1!=x2)
    {
    double y=y1+(y2-y1)*(x-x1)/(x2-x1);
    lb=min(lb, y);
    ub=max(ub, y);
    }
    }
    return max(0.0, ub-lb);
    } int main()
    {
    while (~scanf("%d %d", &M, &N))
    {
    if (M== && N==) break;
    for (int i=; i<M; i++)
    {
    scanf("%d %d", &X1[i], &Y1[i]);
    }
    for (int i=; i<N; i++)
    {
    scanf("%d %d", &X2[i], &Z2[i]);
    }
    int min1=*min_element(X1, X1+M), max1=*max_element(X1, X1+M);
    int min2=*min_element(X2, X2+N), max2=*max_element(X2, X2+N);
    vector<int> xs;
    for (int i=; i<M; i++) xs.push_back(X1[i]);
    for (int i=; i<N; i++) xs.push_back(X2[i]);
    sort(xs.begin(), xs.end());
    double res=;
    for (int i=; i+<xs.size(); i++)
    {
    double a=xs[i], b=xs[i+], c=(a+b)/;
    if (min1<=c && c<=max1 && min2<=c && c<=max2)
    {
    double fa=width(X1, Y1, M, a)*width(X2, Z2, N, a);
    double fb=width(X1, Y1, M, b)*width(X2, Z2, N, b);
    double fc=width(X1, Y1, M, c)*width(X2, Z2, N, c);
    res+=(b-a)/*(fa+*fc+fb);
    }
    }
    printf("%.10f\n", res);
    }
    }

Intersection of Two Prisms(AOJ 1313)的更多相关文章

  1. UVALive 5075 Intersection of Two Prisms(柱体体积交)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  2. [LeetCode] Intersection of Two Arrays II 两个数组相交之二

    Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...

  3. [LeetCode] Intersection of Two Arrays 两个数组相交

    Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, 2, 1] ...

  4. [LeetCode] Intersection of Two Linked Lists 求两个链表的交点

    Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...

  5. 【leetcode】Intersection of Two Linked Lists

    题目简述: Write a program to find the node at which the intersection of two singly linked lists begins. ...

  6. AOJ 0121: Seven Puzzle【BFS】

    From: AOJ 0121 思路:与前几题的bfs不同,这次的bfs没有明确的移动对象,看似任意一个数都可以当成对象移动.这时我们只需要抓住一个格子就行,比如我们把0作为移动对象,那么0在地图中漫游 ...

  7. [LintCode] Intersection of Two Linked Lists 求两个链表的交点

    Write a program to find the node at which the intersection of two singly linked lists begins. Notice ...

  8. LeetCode Intersection of Two Arrays

    原题链接在这里:https://leetcode.com/problems/intersection-of-two-arrays/ 题目: Given two arrays, write a func ...

  9. AOJ DSL_2_C Range Search (kD Tree)

    Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...

随机推荐

  1. 5招详解linux之openEuler /centos7防火墙基本使用指南

    防火墙是一种防火墙管理解决方案,可用于许多 Linux 发行版,它充当 Linux 内核提供的 iptables 数据包筛选系统的前端.在本指南中,将介绍如何为服务器设置防火墙,并向你展示使用管理工具 ...

  2. Kinect+unity 实现体感格斗闯关小游戏

    文章目录 项目地址 1 项目概况 1.1 项目简介 1.2 项目目的 1.3 主要技术 2 设计 2.1 基本概念 2.2 框架 2.3 算法 2.4 模型 2.5 调查问卷 3 实现 3.1 技术难 ...

  3. 设计模式:建造者模式及在jdk中的体现,建造者模式和工厂模式区别

    0.背景 建造模式(Builder模式) 假如有一个需求:盖房子,盖房子过程是一致的:打桩.砌墙.封顶.但是房子是各式各样的,最后盖出来的房子可能是高楼或别墅. 根据直接的思路,不用设计模式思想,我们 ...

  4. Fiddler显示指定host请求,以及过滤无用的css,js

    第一步 右侧窗口点击filters 第二步 点击Use Fiters 第三步 第一个选项不动 no zone filter ,第二个选项选择 show only following hosts 第四步 ...

  5. .Net Core3.1 + EF Core + LayUI 封装的MVC版后台管理系统

    项目名称:学生信息管理系统1.0 后台框架:.Net Core 3.1 + EF Core    yrjw.ORM.Chimp 前端框架:ASP.NET Core MVC  +  LayUI + Bo ...

  6. Jmeter 常用函数(7)- 详解 __time

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.html 作用 返回各种格式的当前时间 语法格式 ${ ...

  7. window下命令启动/停止nginx

    查看Nginx的版本号:nginx -v 启动Nginx:start nginx 快速停止或关闭Nginx:nginx -s stop 正常停止或关闭Nginx:nginx -s quit 配置文件修 ...

  8. KNN手写数字识别

    import numpy as np import matplotlib .pyplot as plt from sklearn.neighbors import KNeighborsClassifi ...

  9. Flink-1.10中的StreamingFileSink相关特性

    一切新知识的学习,都离不开官网得相关阅读,那么StreamingFileSink的官网介绍呢? https://ci.apache.org/projects/flink/flink-docs-rele ...

  10. MySQL 索引结构

    谈到 MYSQL 索引服务端的同学应该是熟悉的不能再熟悉,新建表的时候怎么着都知道先来个主键索引,对于经常查询的列也会加个索引加快查询速度.那么 MYSQL 索引都有哪些类型呢?索引结构是什么样的呢? ...