题目描述

老C的键盘

题解

显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数

根据这一特性想到了啥??? 感谢leo101的友情点拨

二叉树!!!

所以可以把 x/2 看做是 x的父亲, 1 显然就是根

可以把 < 看作是由父亲连向儿子的有向边, > 看作是儿子连向父亲的有向边

所以就是求这棵树的拓扑序的方案数就好了!!!

考虑当前节点的两棵子树都已处理完的时候

在满足和 当前节点的关系的同时, 两颗子树在拓扑序中出现的顺序显然是没有影响的,所以按照子树大小组合数乱搞就好了

然后设 dp[i][j] 表示 i 号节点在当前子树排在第 j 位的方案数就好了

代码


#include<bits/stdc++.h>
using namespace std;
#define re register
#define ll long long
#define in inline
#define get getchar()
in int read()
{
int t=0; char ch=get;
while (ch<'0' || ch>'9') ch=get;
while (ch<='9' && ch>='0') t=t*10+ch-'0', ch=get;
return t;
}
const int mod=1e9+7;
const int _=1010;
ll n,dp[_][_],c[_][_],siz[_]; //siz[i]是以i为根的子树节点个数, c[][]是组合数
char s[_];
in void dfs(ll x)
{
for(re int to=2*x;to<=min(n,2*x+1);to++)
{
dfs(to);
if(s[to]=='>')
{
for(re ll k=siz[x]+siz[to]; k>=1; k--)
{
ll sum=0;
for( re int i=1; i<=min(siz[x],k); i++)
{
for (re int j=k-i+1;j<=siz[to];j++)
{
ll a=(dp[x][i]*dp[to][j])%mod;
ll b=(c[i-1][k-1]*c[siz[x]-i][siz[x]+siz[to]-k])%mod;
a=(a*b)%mod;
sum=(sum+a)%mod;
}
}
dp[x][k]=sum;
}
}
else
{
for(re ll k=siz[x]+siz[to]; k>=1; k--)
{
ll sum=0;
for(re int i=1; i<=min(siz[x],k); i++)
for(re int j=1; j<=min(k-i,siz[to]); j++)
{
ll a=(dp[x][i]*dp[to][j])%mod;
ll b=(c[i-1][k-1]*c[siz[x]-i][siz[x]+siz[to]-k])%mod;
a=(a*b)%mod;
sum=(sum+a)%mod;
}
dp[x][k]=sum;
}
}
siz[x]+=siz[to]; //子树大小统计
}
}
int main()
{
n=read();
scanf("%s",s+2);
c[0][0]=1;
for (re int i=1; i<=n; i++)
{
c[0][i]=1,c[i][i]=1;
dp[i][1]=1,siz[i]=1;
for (re int j=1; j<i; j++) c[j][i]=(c[j][i-1]+c[j-1][i-1])%mod;
} //预处理组合数
dfs(1);
ll ans=0;
for (re int i=1; i<=n; i++) ans=(ans+dp[1][i])%mod; //因为一号节点是整棵树的根
cout<<ans<<endl;
return 0;
}

Luogu P3757 [CQOI2017]老C的键盘的更多相关文章

  1. [bzoj4824][洛谷P3757][Cqoi2017]老C的键盘

    Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 Q 也 ...

  2. 洛谷 P3757 [CQOI2017]老C的键盘

    题面 luogu 题解 其实就是一颗二叉树 我们假设左儿子小于根,右儿子大于根 考虑树形\(dp\) \(f[u][i]\)表示以\(u\)为根的子树,\(u\)为第\(i\)小 那么考虑子树合并 其 ...

  3. 洛谷P3757 [CQOI2017]老C的键盘

    传送门 首先可以直接把整个序列建成一个完全二叉树的结构,这个应该都看得出来 然后考虑树形dp,以大于为例 设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小 ...

  4. [CQOI2017]老C的键盘

    [CQOI2017]老C的键盘 题目描述 额,网上题解好像都是用的一大堆组合数,然而我懒得推公式. 设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数. 转移: \[ ...

  5. [BZOJ4824][Cqoi2017]老C的键盘 树形dp+组合数

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 218  Solved: 171[Submit][Statu ...

  6. [BZOJ4824][CQOI2017]老C的键盘(树形DP)

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 193  Solved: 149[Submit][Statu ...

  7. bzoj 4824: [Cqoi2017]老C的键盘

    Description 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...

  8. [bzoj4824][Cqoi2017]老C的键盘

    来自FallDream的博客,未经允许,请勿转载,谢谢. 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序在某种 ...

  9. BZOJ3167/BZOJ4824 HEOI2013SAO/CQOI2017老C的键盘(树形dp)

    前者是后者各方面的强化版. 容易想到设f[i][j]表示i子树中第j小的是i的方案数(即只考虑相对关系).比较麻烦的在于转移.考虑逐个合并子树.容易想到枚举根原来的排名和子树根原来的排名,算一发组合数 ...

随机推荐

  1. mysql存储过程的初步学习及案例示例

    存储过程 几个月前小编开始初步接触学习存储过程,当然是跟着大神的视频学习的,在学习的过程中自己也记录了一下笔记,如今整理一下,接下来我将从概念,优缺点以及语法和实际应用几方面为大家详细讲解一下存储过程 ...

  2. 【小白学PyTorch】20 TF2的eager模式与求导

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  3. PropertySheet外壳扩展AppWizard

    下载source files - 39 Kb 下载Wizard - 17 Kb 本文旨在简化属性表外壳扩展的实现.它紧接我的第一篇文章 处理上下文菜单壳扩展和灵感 由Michael Dunn最优秀的系 ...

  4. php中 ob_函数 例:ob_start();用法

    ob,输出缓冲区,是output buffering的简称,而不是output cache.ob用对了,是能对速度有一定的帮助,但是盲目的加上ob函数,只会增加CPU额外的负担 ob的基本原则:如果o ...

  5. 多测师讲解selenium ——切换窗口——打印句柄_高级讲师肖sir

    (一)同一个窗口打开两个浏览器 from selenium import webdriverfrom time import sleepdrvier=webdriver.Chrome()url='ht ...

  6. 多测师浅谈 学员实现价值就是我们的幸福_高级讲师肖sir

    学员实现价值就是我们的幸福 作为一名资深的IT高级讲师,在传统的行业IT薪资基本都是过万,作为一名IT培训教师,培养出在不同领域的测试,并且接触各种各样的产品,目前市场流行的比如银行业务系统,语音类系 ...

  7. MeteoInfoLab脚本示例:计算涡度、散度

    用U/V分量数据计算涡度和散度,计算涡度的函数是hcurl,计算散度的函数是hdivg,参数都是U, V.脚本程序: f = addfile('D:/Temp/GrADS/model.ctl') u ...

  8. 工业级wifi模块

    工业级wifi模块 工业级wifi模块ZLSN7004是上海卓岚开发的一款高性能的Wifi.以太网转串口模块.与普通的wifi模块定位在低成本不同,7004定位在高稳定性.丰富功能,设计目标是面向对功 ...

  9. boost之multiprecision

    multiprecision boost中提供的高精度库,支持高精度整型,浮点型等.并且提供统一的接口模板,只需要指定对应的后端类型即可实现对应类型的高精度计算: boost::multiprecis ...

  10. trade可撤销贪心正确性证明

    鉴于tarde这道题正解过于好写,导致我对这个诡异的贪心的正确性产生了疑问,所以花了2h的时间与同机房神犇M-Blanca,Midoria7,goote~进行讨论,最后与goote~犇犇各得出了一个正 ...