TOJ 4383 n % ( pow( p , 2) ) ===0
传送门:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=4383
描述
There is a number n , determine whether there is a p (p>1) that p^2 is a divisor of n.
输入
The first line contains an integer T , the number of test case.
The following T lines , each contains an integer n.
( 1<= T <=10^2 , 1<= n <=10^18 )
输出
A integer p , if there exist multiple answer ,output the minimum one.
Or print “oh,no.” .
样例输入
3
8
16
17
样例输出
2
2
oh,no.
题意:给你一个数n,询问是否存在p,使得p^2 是n的约数,如果有多个p输出最小的那个,如果没有输出"oh,no.";
思路:随机素数测试 Miller-Rabin算法和Pollard_rho大数因数分解
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std;
//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=;//随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=;
while(b)
{
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
}
//计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==)return x%mod;
x%=mod;
long long tmp=x;
long long ret=;
while(n)
{
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
}
//以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<)return false;
if(n==)return true;
if((n&)==) return false;//偶数
long long x=n-;
long long t=;
while((x&)==){x>>=;t++;}
for(int i=;i<S;i++)
{
long long a=rand()%(n-)+;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始 long long gcd(long long a,long long b)
{
if(a==)return ;//???????
if(a<) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
} long long Pollard_rho(long long x,long long c)
{
long long i=,k=;
long long x0=rand()%x;
long long y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解
void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
}
int main()
{
//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
long long n;
int t;
scanf("%d",&t);
while(t--)
{
scanf("%I64d",&n);
if(n == ){
puts("oh,no.");continue;
}
int flag = ,i;
tol=;
findfac(n);
sort(factor,factor+tol);
for(i=;i<tol;i++){
if(factor[i] == factor[i-]){
flag = ;break;
}
}
flag?printf("%I64d\n",factor[i]):puts("oh,no.");
}
return ;
}
TOJ 4383 n % ( pow( p , 2) ) ===0的更多相关文章
- C语言中关于POW在不同状态下四舍五入的解决方法
这是今天作业中的一个代码: #include <stdio.h>#include<math.h>int main(){ printf("请输入一个整数:") ...
- OpenGL ES2.0光照
一.简单光照原理 平行光(正常光) 光照效果= 环境颜色 + 漫反射颜色 + 镜面反射颜色 点光源 光照效果= 环境颜色 + (漫反射颜色 + 镜面反射颜色)× 衰减因子 聚光灯 光照效果= ...
- Python内置函数(5)——pow
英文文档: pow(x, y[, z]) Return x to the power y; if z is present, return x to the power y, modulo z (co ...
- Python内置函数(49)——pow
英文文档: pow(x, y[, z]) Return x to the power y; if z is present, return x to the power y, modulo z (co ...
- Hdu2204 Eddy's爱好 2017-06-27 16:11 43人阅读 评论(0) 收藏
Eddy's爱好 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Subm ...
- Python3 pow() 函数
Python3 pow() 函数 Python3 数字 描述 pow() 方法返回 xy(x的y次方) 的值. 语法 以下是 math 模块 pow() 方法的语法: import math mat ...
- Python pow() 函数
描述 pow() 方法返回 xy(x的y次方) 的值. 语法 以下是 math 模块 pow() 方法的语法: import math math.pow( x, y ) 内置的 pow() 方法 po ...
- IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...
- pow() 函数
pow() 函数用来求 x 的 y 次幂(次方),其原型为: double pow(double x, double y); #include<iostream> #include< ...
随机推荐
- 将tgz文件解压到指定目录
转:http://blog.csdn.net/zhenwenxian/article/details/4400404 tar在linux上是常用的打包.压缩.加压缩工具,他的参数很多,折里仅仅列举常用 ...
- C#串口传输中文字符
发送: Encoding gb = System.Text.Encoding.GetEncoding("gb2312"); byte[] bytes = gb.GetBytes ...
- C# 把byte[]输出为图片文件
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/HK_JY/article/details/80320381 /// <summary> ...
- PHPExcel在TP下使用
第一:你要去PHPExcel官网下载,然后放到网站的Vendor文件夹下面.当然这是为了好管理和导入.你放在其他位置也没有关系. 第二:当然是在你需要的地方写代码.我只写样例,你看懂了就可以灵活的使用 ...
- 机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..
1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 ...
- MFC+OpenGL基础绘制<转>
转载地址:https://blog.csdn.net/u013232740/article/details/47904115 ------------------------------------- ...
- 排序NB三人组
排序NB三人组 快速排序,堆排序,归并排序 1.快速排序 方法其实很简单:分别从初始序列“6 1 2 7 9 3 4 5 10 8”两端开始“探测”.先从右往左找一个小于6的数,再从左往 ...
- java为什么有些异常throw出去需要在函数头用throws声明,一些就不用。
Excepiton分两类:checked exception.runtime exception:直接继承自Exception就是checked exception,继承自RuntimeExcepti ...
- oracle vm突然黑屏了
装完mongodb-compass后,我重启了下虚拟机,发现突然进不到ubuntu系统了,一开起来就黑屏.网上查了下有的说是显卡问题的,有说是内核问题的,但我啥都没干突然间就黑屏了.折腾了一下午没搞定 ...
- How to Pronounce Numbers 20 – 1 Billion
How to Pronounce Numbers 20 – 1 Billion Share Tweet Share Tagged With: Numbers Numbers are something ...