Andrew Ng机器学习课程笔记(二)之逻辑回归
Andrew Ng机器学习课程笔记(二)之逻辑回归
版权声明:本文为博主原创文章,转载请指明转载地址
http://www.cnblogs.com/fydeblog/p/7364636.html
前言
学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新!
这篇博客主要记录了Andrew Ng课程第二章逻辑回归,主要介绍了梯度下降法,逻辑回归的损失函数,多类别分类等等
简要介绍:逻辑回归算法是分类算法,我们将它作为分类算法使用。有时候可能因为这个算法的名字中出现了回归”使你感到困惑,但逻辑回归算法实际上是一种分类算法,它适用于标签 y 取值离散的情况,如:1 0 0 1。比如对邮件进行分类,垃圾邮件用表示,非垃圾邮件用0表示。
实现算法:梯度下降算法
1. 建立逻辑回归假设

括号内的 x跟线性回归的一样,主要是套上g(x),压缩它的函数值范围,方便分类判决。
g(x)的表达式如下:

根据这个函数特性,我们可以知道,g(z)的范围是在(0,1),函数图形如下:

当hθ大于等于0.5时,预测 y=1;当hθ小于 0.5 时,预测 y=0。
2.建立代价函数
对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。理论上来说,我们也可以对逻辑回归模型沿用这个定义,但是问题在于,当我们将带入到这样定义了的代价函数中时,我们得到的代价函数将是一个非凸函数( non-convex function)
如下图所示

这意味着我们的代价函数有许多局部最小值,这将影响梯度下降算法寻找全局最小值。所以需要定义新的代价函数

hθ(x)与 Cost(hθ(x),y)之间的关系如下图所示:

这样构建的Cost(hθ(x),y)函数的特点是: 当实际的y=1且hθ也为1时误差为0,当y=1但hθ不为1时误差随着 hθ的变小而变大;当实际的
y=0 且hθ也为 0 时代价为
0,当 y=0 但 hθ不为0时误差随着 hθ的变大而变大。这样符合单调性,就可以使用梯度下降法。
于是代价函数定义如下

3. 参数更新迭代
这个与线性回归相同

4. 多类别分类: 一对多
很多时候,我们分类的数目是多个的,这里介绍一个叫做"一对多" (one-vs-all) 的分类算法。

我们将多个类中的一个类标记为正向类(y=1),然后将其他所有类都标记为负向类,如图

在我们需要做预测时,我们将所有的分类机都运行一遍,然后对每一个输入变量,都选择最高可能性的输出变量。(就是比较图中三个hθ(x),找到最大值,并判断为相应的类型)

Andrew Ng机器学习课程笔记(二)之逻辑回归的更多相关文章
- Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- Andrew Ng机器学习课程笔记(一)之线性回归
Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 6_Logistic Regression 逻辑回归
Lecture6 Logistic Regression 逻辑回归 6.1 分类问题 Classification6.2 假设表示 Hypothesis Representation6.3 决策边界 ...
随机推荐
- 防Xss注入
转自博客:https://blog.csdn.net/qq_21956483/article/details/54377947 1.什么是XSS攻击 XSS又称为CSS(Cross SiteScrip ...
- whereis+whatis+man
使用Linux过程中无论是使用shell命令.程序开发或者用户文档都需要使用到强大的男人man命令. 使用方法也十分简单,以查看ls命令的使用方法为例: man ls man的搜索路径通常包括以下两个 ...
- foreach控件的运用(非原创)http://blog.chinaunix.net/uid-26884465-id-3416869.html
人们对从认识事物都有一个具体到抽象的过程,学习Jmeter也不例外,通过一个实例来进行学习,一方面可以让初学者有所见即所得的信心,另一方面,其实也是在初学者心中留下了对这事物的一个朦胧的印象,这在以后 ...
- XML Publisher 并发程序由于"输出提交处理程序提交失败
http://www.cnblogs.com/benio/archive/2012/03/30/2424900.html xmlp 报表运行完成后,状态为warning,其原因大概有以下3类:1.&q ...
- spring注解方式 idea报could not autowire
删除项目的iml文件,然后mvn重新导入 reimport
- CentOS 7配置Let’s Encrypt支持免费泛域名证书
Let’s Encrypt从2018年开始支持泛域名证书,有效期3个月,目前仅支持acme方式申请,暂不支持certbot. 1.安装acme.sh curl https://get.acme.sh ...
- 用C#中的键值对遍历数组或字符串元素的次数
代码如下: string strs = "ad6la4ss42d6s3"; Dictionary<char, int> dic = new Dictionary< ...
- windform 重绘Treeview "+-"号图标
模仿wind系统界面,重绘Treeview + - 号图标 一,首先需要图片 ,用于替换原有的 +-号 二.新建Tree扩展类 TreeViewEx继承TreeView using System; u ...
- Linux 安装JavaEE环境之jdk安装笔记
1.安装jdk 先用xftp将jdk的压缩包上传到 /opt/ 2.在/usr/local/下使用命令mkdir java创建java目录 将jdk-7u79-linux-x64.gz解压缩至/usr ...
- 09_python_初始函数
一.定义 函数是对功能和动作的封装 def functionname( parameters ): "函数_文档字符串" function_suite return [expres ...