题目链接

LOJ #2145

题解

一道画风正常的……期望DP?

首先考虑如何以最小步数熄灭所有灯:贪心地从大到小枚举灯,如果它亮着则修改它。可以求出总的最小步数,设为\(cnt\)。

然后开始期望DP。设\(dp[i]\)为当前最小步数是\(i\),总最小步数是\(i\),要达到最小步数是\(i - 1\)的状态,期望要走多少步。则有\(\frac{i}{n}\)的几率恰好走了该走的一步,而有\(\frac{n - i}{n}\)的几率走错了(回到了\(dp[i + 1]\)表示的状态)。

则:$$dp[i] = \frac{i}{n} + \frac{n - i}{n}(1 + dp[i + 1] + dp[i])$$

就可以推出来了。

答案就是:\((\sum_{i = k + 1}^{cnt} dp[i] + min(cnt, k)) * n!\)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstdlib>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 100005, P = 100003;
int n, m, a[N], cnt;
ll dp[N], ans; ll qpow(ll a, ll x){
ll ret = 1;
while(x){
if(x & 1) ret = ret * a % P;
a = a * a % P;
x >>= 1;
}
return ret;
} int main(){ read(n), read(m);
for(int i = 1; i <= n; i++) read(a[i]);
for(int i = n; i; i--)
if(a[i]){
cnt++;
for(int j = 1; j * j <= i; j++)
if(i % j == 0){
a[j] ^= 1;
if(j * j < i) a[i / j] ^= 1;
}
}
for(int i = n; i; i--)
dp[i] = 1 + (n - i) * qpow(i, P - 2) % P * (1 + dp[i + 1]) % P;
for(int i = cnt; i > m; i--)
ans = (ans + dp[i]) % P;
ans = (ans + min(cnt, m)) % P;
for(int i = 2; i <= n; i++)
ans = ans * i % P;
write(ans), enter; return 0;
}

LOJ #2145. 「SHOI2017」分手是祝愿的更多相关文章

  1. 【LOJ 2145】「SHOI2017」分手是祝愿

    LOJ 2145 100pts 这题...BT啊 首先我们很容易想出\(dp(msk)\)表示现在灯开关的情况是\(msk\),期望通过多少步走到终结态. 很明显\(dp(msk)=\frac{1}{ ...

  2. loj2145 「SHOI2017」分手是祝愿

    记 \(f_i\) 是从要做 \(i\) 步好操作变成要做 \(i-1\) 步好操作的期望操作次数. 显然 \(f_i=i/n \times 1 + (1-i/n) \times (1 + f_{i+ ...

  3. loj #2143. 「SHOI2017」组合数问题

    #2143. 「SHOI2017」组合数问题   题目描述 组合数 Cnm\mathrm{C}_n^mC​n​m​​ 表示的是从 nnn 个互不相同的物品中选出 mmm 个物品的方案数.举个例子, 从 ...

  4. LOJ #2141. 「SHOI2017」期末考试

    题目链接 LOJ #2141 题解 据说这道题可以三分(甚至二分)? 反正我是枚举的 = = 先将t和b数组排序后计算出前缀和, 然后枚举最晚的出成绩时间,每次可以O(1)直接计算调整到该时间所需的代 ...

  5. LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)

    题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...

  6. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  7. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  8. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  9. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

随机推荐

  1. python_basic

    开始学习python ,欢迎一起进步.

  2. java 读取excel内容转为JSONArray

    需要引入的JAR     <!--*.xls--> <dependency> <groupId>net.sourceforge.jexcelapi</grou ...

  3. 20155211 网络对抗 Exp9 Web安全基础实践

    20155211 网络对抗 Exp9 Web安全基础实践 基础问题回答 SQL注入攻击原理,如何防御? 原理:SQL注入攻击指的是通过构建特殊的输入作为参数传入Web应用程序,而这些输入大都是SQL语 ...

  4. 2017-2018-2 『网络对抗技术』Exp2:后门原理与实践

    1. 后门原理与实践实验说明及预备知识 一.实验说明 任务一:使用netcat获取主机操作Shell,cron启动 (0.5分) 任务二:使用socat获取主机操作Shell, 任务计划启动 (0.5 ...

  5. 20155234 昝昕明《基于ARM实验箱的国密算法应用》课程设计个人报告

    20155234 昝昕明<基于ARM实验箱的国密算法应用>课程设计个人报告 个人贡献 参与课设题目讨论及完成全过程: 资料收集: SM1算法及和ARM之间通信 负责串口代码调试: 协调完成 ...

  6. Centos7 定时任务启动python脚本发送邮件

    直接上python脚本: 2.我是把这个脚本放在home文件夹下面 3.在centos命令模式下: crontab -e   命令编辑启动脚本: 4.第一个命令意思是:每天9点到下午5点,每隔一个小时 ...

  7. python删除文件与目录的方法

    python内置方法删除目录(空目录与非空目录)及文件 1.os.remove(file_path):删除文件 #PPTV是文件夹,xen.txt是文件 >>> os.remove( ...

  8. How to export data from Thermo-Calc 如何从Thermo-calc导出文本数据

    记录20180510 问题:如何从thermo-calc导出文本数据供origin绘图? 解决: In Thermo-Calc graphical mode, you can just add a ' ...

  9. Katalon Studio学习笔记(二)——请求响应中文乱码解决方法

    Katalon Studio接口测试发现返回的中文消息是乱码,这是因为KS的编码格式是UTF-8,因此导致中文字体出现乱码.如下图所示: 在我们的系统中添加一个名字为JAVA_TOOL_OPTIONS ...

  10. Java 面向对象之构造方法

    01构造方法引入 A:构造方法的引入 在开发中经常需要在创建对象的同时明确对象的属性值,比如员工入职公司就要明确他的姓名.年龄等属性信息. 那么,创建对象就要明确属性值,那怎么解决呢?也就是在创建对象 ...