(原题为浙江名校新高考研究联盟2018届第三次联考选择压轴题)

在平面$\alpha$内,已知$AB\perp BC$,过直线$AB,BC$分别作平面$\beta,\gamma$,使得锐二面角$\alpha-AB-\beta$为$\dfrac{\pi}{3}$,锐二面角$\alpha-BC-\gamma$为$\dfrac{\pi}{3}$,则平面$\beta$和平面$\gamma$所成的锐二面角的余弦值为____

提示:如图注意到以下结论:(三面角的第二余弦定理)$\cos D=-\cos A\cos C+\sin A\sin C\cos \angle CBA$

其中$A,C,D$分别表示二面角$D-BA-C,D-BC-A,A-BD-C$所表示的二面角的平面角

此题中$\alpha-AB-\beta=C-AB-D;\alpha-BC-\gamma=A-BC-D$代入数值得$\cos D=-\cos\dfrac{\pi}{3}\cos\dfrac{\pi}{3}=-\dfrac{1}{4}$

由于所求为锐二面角,故答案为$\dfrac{1}{4}$.

注:

1.三面角的正弦定理如图为:$\dfrac{\sin D}{\sin\angle CBA}=\dfrac{\sin C}{\sin\angle DBA}=\dfrac{\sin A}{\sin\angle CBD}$

2.三面角的第一余弦定理(三射线定理):$\cos\angle CBA=\cos\angle DBA\cos\angle DBC+\sin\angle DBA\sin\angle DBC\cos D$

3.与这些类似的还有一个和线面角最小有关的三余弦定理.

MT【193】三面角的正余弦定理的更多相关文章

  1. MT【91】空间余弦定理

    评:空间余弦定理:空间四边形$ABCD$中$cos<AC,BD>=\frac{|(|AB|^2+|CD|^2)-(|BC|^2+|AD|^2)}{2|AC||BD|}$,证明用向量.

  2. MT【34】正余弦的正整数幂次快速表示成正余弦的线性组合

    问题:如何快速把$cos^4xsin^3x$表示成正弦,余弦的线性组合? 分析:利用牛顿二项式展开以下表达式: 再利用欧拉公式$e^{i\theta}=cos\theta+isin\theta$ 比如 ...

  3. MT【92】空间余弦定理解题

    评:学校常规课堂教学里很少讲到这个,有点可惜.

  4. python库-collections模块Counter类

    Counter类主要是用来跟踪值出现的次数.它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value. demo: all_words = [] # 列表里面是汉字(可 ...

  5. MT【186】四边形中的余弦定理

    在四边形$ABCD$中,若$AB=a,BC=b,CD=c,AD=d,AC=e,BD=f$,则 $$a^2c^2+b^2d^2=e^2f^2+2abcd\cos(A+C).$$ 注:这个结果可以看成是余 ...

  6. hdu 4033Regular Polygon(二分+余弦定理)

    Regular Polygon Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)T ...

  7. 解密电子书之三:MCU(君正)

    汉王科技,早先使用的是Marvell的Xscal(ARM架构).而后据说出于功耗与价格的考虑,汉王旗下的全线产品,除了双品牌的T61(ALEX)以外,都使用北京君正提供的产品.君正的4740,基于MI ...

  8. 7.30 正睿暑期集训营 A班训练赛

    目录 2018.7.30 正睿暑期集训营 A班训练赛 T1 A.蔡老板分果子(Hash) T2 B.蔡老板送外卖(并查集 最小生成树) T3 C.蔡老板学数学(DP NTT) 考试代码 T2 T3 2 ...

  9. 《逆袭大学:传给IT学子的正能量》

    <逆袭大学:传给IT学子的正能量> 基本信息 作者: 贺利坚 丛书名: 图灵原创 出版社:人民邮电出版社 ISBN:9787115347473 上架时间:2014-3-3 出版日期:201 ...

随机推荐

  1. 【转】深入理解C++的动态绑定和静态绑定 & 不要重定义虚函数中的默认参数

    为了支持c++的多态性,才用了动态绑定和静态绑定.理解他们的区别有助于更好的理解多态性,以及在编程的过程中避免犯错误.需要理解四个名词:1.对象的静态类型:对象在声明时采用的类型.是在编译期确定的.2 ...

  2. 剖析管理所有大数据组件的可视化利器:Hue

    日常的大数据使用都是在服务器命令行中进行的,可视化功能仅仅依靠各个组件自带的web界面来实现,不同组件对应不同的端口号,如:HDFS(50070),Yarn(8088),Hbase(16010)等等, ...

  3. struts2_Interceptor

    题目要求:要求当未登录访问某些Action时,自动跳转到登录界面. 1. 2. 3. 4. 5.默认拦截器堆栈为defautStack,但一旦用户添加了拦截器,默认拦截器失效 6. 7. struts ...

  4. maven中添加jetty运行插件

            maven项目,用jetty插件运行,对热部署的支持比较好.maven的pom文件加入下面代码 <plugin> <groupId>org.mortbay.je ...

  5. WPF解决按钮上被透明控件遮盖时无法点击问题

    原文:WPF解决按钮上被透明控件遮盖时无法点击问题 IsHitTestVisible="False" 在控件上设置如上属性即可,即可让透明控件不触发点击效果

  6. [CF1007D]Ants[2-SAT+树剖+线段树优化建图]

    题意 我们用路径 \((u, v)\) 表示一棵树上从结点 \(u\) 到结点 \(v\) 的最短路径. 给定一棵由 \(n\) 个结点构成的树.你需要用 \(m\) 种不同的颜色为这棵树的树边染色, ...

  7. HashMap 源码解析(一)之使用、构造以及计算容量

    目录 简介 集合和映射 HashMap 特点 使用 构造 相关属性 构造方法 tableSizeFor 函数 一般的算法(效率低, 不值得借鉴) tableSizeFor 函数算法 效率比较 tabl ...

  8. Java使用Redis学习笔记

    如果我们使用Java操作Redis, 需要确保已经安装了 redis 服务及 Java redis 驱动. Maven项目可以直接在pom.xml中加入jedis包驱动: <dependency ...

  9. Runtime.getRuntime().addShutdownHook(Thread thread) 程序关闭时钩子,优雅退出程序

    根据 Java API, 所谓 shutdown hook 就是已经初始化但尚未开始执行的线程对象.在Runtime 注册后,如果JVM要停止前,这些 shutdown hook 便开始执行.也就是在 ...

  10. Python_Xlrd&Xlwt

    import xlrd # \U 开始的字符被编译器认为是八进制 解决方法 r objWB = xlrd.open_workbook(r'C:\Users\IBM\Desktop\S1\7月下旬入库表 ...