BZOJ原题链接

洛谷原题链接

我们可以倒着来\(DP\)。

设\(f[i][j]\)表示剩余\(i\)个人,从庄家数起第\(j\)个人的胜率,设当前枚举到第\(k\)张牌,该情况下这一轮淘汰的位置为\(x\),则有状态转移方程:

\(\qquad\qquad f[i][j] = f[i][j] + \dfrac{f[i - 1][i - x + j]}{m}, (x > j)\)

\(\qquad\qquad f[i][j] = f[i][j] + \dfrac{f[i - 1][j - x]}{m}, (x < j)\)

简单解释下。

  1. 当\(x = j\)时,该人被淘汰,所以不用管。

  2. 当\(x > j\)时,因为庄家被淘汰的下一个人,所以当前从庄家数起第\(j\)个人就变成\(i - x + j\)个人。

  3. 当\(x < j\)时,当前从庄家数起第\(j\)个人就变成\(j - x\)个人。

因为只剩一人时,就是庄家获胜,所以\(f[1][1] = 1\),其余为\(0\)。

最后对于从庄家数起第\(i\)个人,答案为\(f[n][i]\)。

#include<cstdio>
using namespace std;
const int N = 55;
int a[N];
double f[N][N];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
int main()
{
int i, j, k, n, m, ne;
n = re();
m = re();
for (i = 1; i <= m; i++)
a[i] = re();
f[1][1] = 1;
for (i = 2; i <= n; i++)
for (j = 1; j <= i; j++)
for (k = 1; k <= m; k++)
{
ne = a[k] % i ? a[k] % i : i;
if (ne > j)
f[i][j] += f[i - 1][i - ne + j] / m;
else
if (ne < j)
f[i][j] += f[i - 1][j - ne] / m;
}
for (i = 1; i <= n; i++)
printf("%.2f%% ", f[n][i] * 100);
return 0;
}

BZOJ3191或洛谷2059 [JLOI2013]卡牌游戏的更多相关文章

  1. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  2. 洛谷 P2059 [JLOI2013]卡牌游戏(概率dp)

    题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下 ...

  3. 洛谷P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  4. Luogu 2059 [JLOI2013]卡牌游戏 - 概率DP

    Solution 设状态 $F[i][j] $为 还剩余 $i$ 个人时, 第 $j$ 个人 的胜率. 边界: $F[1][1] = 1$(只剩下一个人了). 这样设置状态就能使 $i-1$ 个人的答 ...

  5. bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=3191 每个人获胜的概率只与其在排列中与庄家的相对位置有关 dp[i][j] 还剩i个人时,从庄家数第 ...

  6. BZOJ_3191_[JLOI2013]卡牌游戏_概率DP

    BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...

  7. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

  8. [bzoj3191] [JLOI2013]卡牌游戏

    概率DP. 首先由题解可得>_<,胜出概率只与剩余人数.与庄家的相对位置有关. 所以设f[i][j]表示剩下i个人,从庄家开始第j个人的胜利概率... 根据卡牌一通乱搞即可... #inc ...

  9. 【bzoj3191】[JLOI2013]卡牌游戏 概率dp

    题目描述 n个人围成一圈玩游戏,一开始庄家是1.每次从m张卡片中随机选择1张,从庄家向下数个数为卡片上的数的人,踢出这个人,下一个人作为新的庄家.最后一个人获胜.问每个人获胜的概率. 输入 第一行包括 ...

随机推荐

  1. css图标库 font-awesome.min.css

    下载font-awesome-4.4.0 同时引入font-awesome-4.4.0.min.css 通过<i class='fa fa-sign-out'></i>生成图片 ...

  2. gradle 很好用的么

    Gradle 其实是很好用的 2017, Apr 14 by Tesla Ice Zhang Gradle 是一款使用 Kotlin (划掉) Groovy 编写的 JVM 构建工具,其易用性和 Ma ...

  3. 04_web基础(二)之web构建

    03.04.05.06web项目创建 07.第一个Servlet程序 1.拷贝tomcat 中的 servlet-api.jar 在lib包下面 2.新建一个HelloWordServlet类并实现 ...

  4. JDBC的基本概念

    英文名:Java DataBase Connectivity 中文名:数据库连接 作用: java操作数据库 本质上(sun公司的程序员)定义的一套操作关系型数据库的规则也就是接口,各数据库厂商实现接 ...

  5. 安装FP

    一.安装Oracle 11.2 64-bit数据库 1.安装数据库软件并将SEINESCM数据库还原到服务器上, 2.配置监听和TNS信息 二.安装数据库32位客户端(为SSIS配套使用).安装ORA ...

  6. Ant 初级入门

    一.Ant简介 Ant是一个Apache基金会下的跨平台的构件工具. 由于Ant是基于Java的,所以需要Java环境的支持,也就是配置好 JAVA_HOME 和 ANT_HOME 环境变量分别指向J ...

  7. jfinal头像裁剪上传服务器

    前端页面完整代码,复制可用,记得导入库文件 <!DOCTYPE html> <html lang="en"> <head> <title& ...

  8. sourceforge

    sourceforge SourceForge.net,又称SF.net,是开源软件开发者进行开发管理的集中式场所. SourceForge.net由VA Software提供主机,并运行Source ...

  9. [leetcode]300. Longest Increasing Subsequence最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  10. What's the #pragma pack

    What's the #pragma pack 这是一个预编译宏, 目前我对于它的认识是: 告诉编译器对于某些结构进行字节对齐使用的. 目前阶段,几乎不使用, 只是见到了, 有疑问, 先简单学习记录一 ...