题目背景

在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:

1 2 3 4

8 7 6 5

题目描述

我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。

这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):

“A”:交换上下两行;

“B”:将最右边的一列插入最左边;

“C”:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A: 8 7 6 5

1 2 3 4

B: 4 1 2 3

5 8 7 6

C: 1 7 2 4

8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。

输入输出格式

输入格式:

只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。

输出格式:

Line 1: 包括一个整数,表示最短操作序列的长度。

Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。

输入输出样例

输入样例#1:

2 6 8 4 5 7 3 1 
输出样例#1:

7
BCABCCB

说明

题目翻译来自NOCOW。

USACO Training Section 3.2

模拟一下它的三种操作,宽搜一下就好了。

注意判重,它本来是吓到我了,超过60个字符换行,其实最多应该是22步,状态有40320种(跑了一遍全排列)。

至于判重,建议用map,然而我非常浪费空间的把bool数组开到了10^8.

代码实现:

 #include<cstdio>
const int maxn=;
int ans,n,s,head,tail,e;
int a[]={,,,,,,,};
int b[]={,,,,,,,};
int c[]={,,,,,,,};
char ch[];
bool v[];
struct nate{
int now,step;
char ts[];
}q[maxn];
void write(int x){
printf("%d\n",q[x%maxn].step);
for(int i=;i<=q[x%maxn].step;i++)
printf("%c",q[x%maxn].ts[i]);
}
int main(){
for(int i=,j;i<;i++){
scanf("%d",&j);
ans*=;
ans+=j;
}
q[head++].now=;
v[q[].now]=;
if(q[].now==ans){write();return ;}
while(head>tail){
n=q[tail%maxn].now;
s=q[tail%maxn].step;
for(int i=;i<=s;i++) ch[i]=q[tail%maxn].ts[i];
tail++;
for(int i=,j=;i<;i++){e+=n/j%*a[i];j*=;}
if(!v[e]){
q[head%maxn].now=e;v[e]=;
for(int i=;i<=s;i++) q[head%maxn].ts[i]=ch[i];
q[head%maxn].step=s+;q[head%maxn].ts[s+]='A';
if(q[head%maxn].now==ans){write(head);return ;}
head++;
}
e=;
for(int i=,j=;i<;i++){e+=n/j%*b[i];j*=;}
if(!v[e]){
q[head%maxn].now=e;v[e]=;
for(int i=;i<=s;i++) q[head%maxn].ts[i]=ch[i];
q[head%maxn].step=s+;q[head%maxn].ts[s+]='B';
if(q[head%maxn].now==ans){write(head);return ;}
head++;
}
e=;
for(int i=,j=;i<;i++){e+=n/j%*c[i];j*=;}
if(!v[e]){
q[head%maxn].now=e;v[e]=;
for(int i=;i<=s;i++) q[head%maxn].ts[i]=ch[i];
q[head%maxn].step=s+;q[head%maxn].ts[s+]='C';
if(q[head%maxn].now==ans){write(head);return ;}
head++;
}
e=;
}
}

练习了一下BFS。

题目来源:洛谷

神器的方块Magic Squares的更多相关文章

  1. USACO 3.2 Magic Squares

    Magic SquaresIOI'96 Following the success of the magic cube, Mr. Rubik invented its planar version, ...

  2. 840. Magic Squares In Grid (5月27日)

    开头 这是每周比赛中的第一道题,博主试了好几次坑后才勉强做对了,第二道题写的差不多结果去试时结果比赛已经已经结束了(尴尬),所以今天只记录第一道题吧 题目原文 Magic Squares In Gri ...

  3. 洛谷 P2730 魔板 Magic Squares 解题报告

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  4. 哈希+Bfs【P2730】 魔板 Magic Squares

    没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...

  5. 3.2.5 Magic Squares 魔板

    3.2.5 Magic Squares 魔板 成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 我们知道魔板的每一个方 ...

  6. 【简●解】 LG P2730 【魔板 Magic Squares】

    LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...

  7. 洛谷 P2730 魔板 Magic Squares

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  8. 【Leetcode_easy】840. Magic Squares In Grid

    problem 840. Magic Squares In Grid solution: class Solution { public: int numMagicSquaresInside(vect ...

  9. [USACO3.2]魔板 Magic Squares

    松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...

随机推荐

  1. Eclipse/STS 在线安装阿里java代码规约插件

    1.打开Idea的在线安装插件界面,通过“Help”-->“Install New Software...” 进入 2. 在 “Work with” 栏输入插件包的下载地址:https://p3 ...

  2. O(1)的快速乘

    那么 有位神仙已经说了O(1)的算法(当然不是我) 这是一种骚操作 直接放代码了啊 inline LL mul(LL a,LL b,LL Mod){ LL lf = a * ( b >> ...

  3. less新手入门(一) 变量、extend扩展

    前景提要 个人在学习less时候的学习笔记及个人总结,主要是结合less中文网来学习的,但是说是中文网并不是中文呀,看起来很耽误时间,为了避免以后再次看的时候还要翻译思考,特意做此总结,方便以后查阅. ...

  4. C# 的占位符

    static void Main(string[] args) { Console.WriteLine("A:{0},a:{1}",65,97); Console.ReadLine ...

  5. 238 Product of Array Except Self 除自身以外数组的乘积

    一个长度为 n 的整形数组nums,其中 n > 1,返回一个数组 output ,其中 output[i] 等于nums中除nums[i]以外所有元素的乘积.不用除法 且在O(n)内解决这个问 ...

  6. multiprocessing的进程通信Pipe和Queue

    pipe管道,2个进程通信,允许单项或者双向,multiprocessing.Pipe(duplex=False)为单项,默认双向 示例: from multiprocessing import Pr ...

  7. Android requestWindowFeature(Window.FEATURE_NO_TITLE)无效解决方法

    今天在<第一行代码>上学习做自定义标题栏,需要将系统自带的标题栏隐藏掉,使用自定义的标题栏,结果发现,requestWindowFeature(Window.FEATURE_NO_TITL ...

  8. Android常见问题总结(二)

    1.布局文件LinearLayout线性布局添加内容报错. 解决方法: 线性布局LinearLayout中包裹的元素多余1个需要添加android:orientation属性. 2.android 的 ...

  9. window下编写python脚本在linux下运行出错 usr/bin/python^M: bad interpreter: No such file or directory

    今天在windows下使用notepad++写了个python脚本,传到linux服务器执行后提示:-bash: ./logger.py: usr/bin/python^M: bad interpre ...

  10. centos如何离线安装部署node&pm2?

    最近我们项目要上即时通讯,因为项目对安全要求比较高,所以选择了即时通讯云服务器yun2win,他们提供了数据服务器让我们自己安装部署.那么问题来了,我们服务器是放在内网,完全无法访问外网,而yun2w ...