题目背景

在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:

1 2 3 4

8 7 6 5

题目描述

我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。

这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):

“A”:交换上下两行;

“B”:将最右边的一列插入最左边;

“C”:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A: 8 7 6 5

1 2 3 4

B: 4 1 2 3

5 8 7 6

C: 1 7 2 4

8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。

输入输出格式

输入格式:

只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。

输出格式:

Line 1: 包括一个整数,表示最短操作序列的长度。

Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。

输入输出样例

输入样例#1:

2 6 8 4 5 7 3 1 
输出样例#1:

7
BCABCCB

说明

题目翻译来自NOCOW。

USACO Training Section 3.2

模拟一下它的三种操作,宽搜一下就好了。

注意判重,它本来是吓到我了,超过60个字符换行,其实最多应该是22步,状态有40320种(跑了一遍全排列)。

至于判重,建议用map,然而我非常浪费空间的把bool数组开到了10^8.

代码实现:

 #include<cstdio>
const int maxn=;
int ans,n,s,head,tail,e;
int a[]={,,,,,,,};
int b[]={,,,,,,,};
int c[]={,,,,,,,};
char ch[];
bool v[];
struct nate{
int now,step;
char ts[];
}q[maxn];
void write(int x){
printf("%d\n",q[x%maxn].step);
for(int i=;i<=q[x%maxn].step;i++)
printf("%c",q[x%maxn].ts[i]);
}
int main(){
for(int i=,j;i<;i++){
scanf("%d",&j);
ans*=;
ans+=j;
}
q[head++].now=;
v[q[].now]=;
if(q[].now==ans){write();return ;}
while(head>tail){
n=q[tail%maxn].now;
s=q[tail%maxn].step;
for(int i=;i<=s;i++) ch[i]=q[tail%maxn].ts[i];
tail++;
for(int i=,j=;i<;i++){e+=n/j%*a[i];j*=;}
if(!v[e]){
q[head%maxn].now=e;v[e]=;
for(int i=;i<=s;i++) q[head%maxn].ts[i]=ch[i];
q[head%maxn].step=s+;q[head%maxn].ts[s+]='A';
if(q[head%maxn].now==ans){write(head);return ;}
head++;
}
e=;
for(int i=,j=;i<;i++){e+=n/j%*b[i];j*=;}
if(!v[e]){
q[head%maxn].now=e;v[e]=;
for(int i=;i<=s;i++) q[head%maxn].ts[i]=ch[i];
q[head%maxn].step=s+;q[head%maxn].ts[s+]='B';
if(q[head%maxn].now==ans){write(head);return ;}
head++;
}
e=;
for(int i=,j=;i<;i++){e+=n/j%*c[i];j*=;}
if(!v[e]){
q[head%maxn].now=e;v[e]=;
for(int i=;i<=s;i++) q[head%maxn].ts[i]=ch[i];
q[head%maxn].step=s+;q[head%maxn].ts[s+]='C';
if(q[head%maxn].now==ans){write(head);return ;}
head++;
}
e=;
}
}

练习了一下BFS。

题目来源:洛谷

神器的方块Magic Squares的更多相关文章

  1. USACO 3.2 Magic Squares

    Magic SquaresIOI'96 Following the success of the magic cube, Mr. Rubik invented its planar version, ...

  2. 840. Magic Squares In Grid (5月27日)

    开头 这是每周比赛中的第一道题,博主试了好几次坑后才勉强做对了,第二道题写的差不多结果去试时结果比赛已经已经结束了(尴尬),所以今天只记录第一道题吧 题目原文 Magic Squares In Gri ...

  3. 洛谷 P2730 魔板 Magic Squares 解题报告

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  4. 哈希+Bfs【P2730】 魔板 Magic Squares

    没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...

  5. 3.2.5 Magic Squares 魔板

    3.2.5 Magic Squares 魔板 成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 我们知道魔板的每一个方 ...

  6. 【简●解】 LG P2730 【魔板 Magic Squares】

    LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...

  7. 洛谷 P2730 魔板 Magic Squares

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  8. 【Leetcode_easy】840. Magic Squares In Grid

    problem 840. Magic Squares In Grid solution: class Solution { public: int numMagicSquaresInside(vect ...

  9. [USACO3.2]魔板 Magic Squares

    松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...

随机推荐

  1. CentOS 6.5克隆后eth1与eth0的问题

    CentOS 6.5克隆后eth1与eth0的问题   按照安装文档执行以下步骤时:   从克隆出来的虚拟机网卡都会被命名为eth1,而有些程序或者脚本,涉及到网卡的,默认写的是eth0,这时就存在要 ...

  2. python/shell脚本报异常^M: bad interpreter: No such file or directory

    问题:在Windows写了一python脚本,上传Linux服务器执行,报异常*****^M: bad interpreter: No such file or directory 原因:window ...

  3. redis简介及常见问题

    目录 简介 特点 优点 高性能 高并发 为什么要用 redis 而不用 map/guava 做缓存? redis 和 memcached 的区别 Redis快的原因 为什么redis是单线程 为什么r ...

  4. (数论)51NOD 1073 约瑟夫环

    N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从1开始报数.问最后剩下的人的编号.例如:N = 3,K = 2.2号先出列,然后是1号,最后剩下的是3号.In ...

  5. new mysqli_ and 旧mysql

    旧的php处理语法: 1. <select name="s" onChange="redirec()"> <option selected&g ...

  6. 转 MySQL数据库基础

    http://lib.csdn.net/article/mysql/57883 1 数据库基础 一.数据库与数据库管理系统 1.数据库(DB):存放数据的仓库,从广义来说,数据不仅包括数字,还包括了文 ...

  7. Selenium基于Python web自动化基础一 -- 基础汇总及简单操作

    Selenium是UI层WEB端的自动化测试框架,也是目前市面上比较流行的自动化测试框架. ui层自动化测试本质是什么?模拟用户的真实操作行为. 基础汇总: 导入所需要的模块 from seleniu ...

  8. android中实现在矩形框中输入文字,可以显示剩余字数的功能

    虽然这两个功能都比较简单,但是在实际app开发中真的很常见,特别是显示字数或剩余字数这个功能 如下图: 要实现上面的功能,需要做到三点: 1.实现矩形框布局 思路就是矩形框作为整个布局的一个backg ...

  9. ubuntu+ngnix+thinkphp pathinfo配置

    一.thinkphp 项目改为pathinfo模式 XXX/ThinkPHP/Conf/convention.php文件中找到 'URL_MODEL' => 1, // URL访问模式,可选参数 ...

  10. World Cup(The 2016 ACM-ICPC Asia China-Final Contest dfs搜索)

    题目: Here is World Cup again, the top 32 teams come together to fight for the World Champion. The tea ...