考虑暴力,答案显然是 \(\sum_{i=1}^n\sum_{j=1}^m(2(\gcd(i,j)-1)+1)=\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\)。

考虑优化,设 \(f(i)\) 是 \(\gcd(x,y) = i\) 的点的个数,则 \(\sum_{i=1}^{\min(n,m)}f(i)(2i-1)\) 即为答案。

考虑优化 \(f(i)\) 的计算,我们可以先算出 \(i\) 作为公约数的个数 \(\left \lfloor \frac{n}{i} \right \rfloor \left \lfloor \frac{m}{i} \right \rfloor\),然后减去许多个 \(f(j)\) ,其中 \(i < j \leq \min(n,m)\) 并且 \(i|j\)。

#include <iostream>
using namespace std;
typedef long long ll;
int n, m;
ll f[100005], ans;
int main(){
cin>>n>>m;
if(n>m) swap(n, m);
for(int i=n; i; i--){
f[i] = (ll)(n/i) * (ll)(m/i);
for(int j=i+i; j<=n; j+=i)
f[i] -= f[j];
ans += f[i] * (2 * i - 1);
}
cout<<ans<<endl;
return 0;
}

luogu1447 [NOI2010]能量采集的更多相关文章

  1. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  2. [luogu1447 NOI2010] 能量采集 (容斥原理)

    传送门 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的 ...

  3. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  4. noi2010 能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 3068  Solved: 1820 [Submit][Sta ...

  5. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  6. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  7. 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 1831  Solved: 1086[Submit][Statu ...

  8. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  9. 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)

    [bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

随机推荐

  1. 洛谷p2234/BZOJ1588 [HNOI2002]营业额统计

    题目链接: 洛谷 BZOJ 分析: 好像没有什么好说的就是一个平衡树的板子--唯一要注意的就是这里要找的并不是严格的前驱和后继,因为如果找到之前某一天的营业额和它相等那么差就是0,所以我们仍然在结构体 ...

  2. 树状数组 POJ 2481 Cows

    题目传送门 #include <cstdio> #include <cstring> #include <algorithm> using namespace st ...

  3. Spark MLlib编程API入门系列之特征选择之R模型公式(RFormula)

    不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择). RFormula用于将数据中的字段通过R ...

  4. P2956 [USACO09OCT]机器人犁田The Robot Plow

    题目描述 Farmer John has purchased a new robotic plow in order to relieve him from the drudgery of plowi ...

  5. Oracle 十大SQL语句

    oracle数据库十大SQL语句             操作对象(object) /*创建对象 table,view,procedure,trigger*/ create object object ...

  6. Redis学习笔记1-安装配置

    一.Redis安装 Redis官网:http://www.redis.io/download 注意:版本号2.4,2.6,2.8等偶数结尾为稳定版,2.5等为非稳定版本,生成环境应该使用稳定版 下载解 ...

  7. SQL中的SELECT_简单查询语句总结

    --以scott用户下的dept和emp表为例 --注意:如果scott用户不能使用,请使用system用户登录--解锁scott用户ALTER USER SCOTT ACCOUNT UNLOCK;- ...

  8. 初试springWebMVC

    最近在尝试配置SpringMVC,发现各种坑. 首先遇到了这个问题. 'component-scan' and its parser class [org.springframework.contex ...

  9. ubuntu服务器切换语言

    如果在安装Ubuntu Server时选择了中文,在系统安装完毕后,默认是中文,在操作时经常会显示乱码,如果需要设置回英文,则修改/etc/default/locale,将 LANG="cn ...

  10. C++#pragma pack指令

    微软官方文档说#pragma pack 指令的作用是为结构.联合和类成员指定 pack 对齐.的主要作用就是改变编译器的内存对齐方式,这个指令在网络报文的处理中有着重要的作用,#pragma pack ...