考虑暴力,答案显然是 \(\sum_{i=1}^n\sum_{j=1}^m(2(\gcd(i,j)-1)+1)=\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\)。

考虑优化,设 \(f(i)\) 是 \(\gcd(x,y) = i\) 的点的个数,则 \(\sum_{i=1}^{\min(n,m)}f(i)(2i-1)\) 即为答案。

考虑优化 \(f(i)\) 的计算,我们可以先算出 \(i\) 作为公约数的个数 \(\left \lfloor \frac{n}{i} \right \rfloor \left \lfloor \frac{m}{i} \right \rfloor\),然后减去许多个 \(f(j)\) ,其中 \(i < j \leq \min(n,m)\) 并且 \(i|j\)。

#include <iostream>
using namespace std;
typedef long long ll;
int n, m;
ll f[100005], ans;
int main(){
cin>>n>>m;
if(n>m) swap(n, m);
for(int i=n; i; i--){
f[i] = (ll)(n/i) * (ll)(m/i);
for(int j=i+i; j<=n; j+=i)
f[i] -= f[j];
ans += f[i] * (2 * i - 1);
}
cout<<ans<<endl;
return 0;
}

luogu1447 [NOI2010]能量采集的更多相关文章

  1. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  2. [luogu1447 NOI2010] 能量采集 (容斥原理)

    传送门 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的 ...

  3. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  4. noi2010 能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 3068  Solved: 1820 [Submit][Sta ...

  5. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  6. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  7. 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 1831  Solved: 1086[Submit][Statu ...

  8. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  9. 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)

    [bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

随机推荐

  1. [洛谷P4185] [USACO18JAN]MooTube

    题目链接: 传送门 题意: 给定一颗N个节点的树,定义两点距离为他们之间路径中边权最小值. Q次询问K,V,询问到V距离>=K的点有多少(不含V) 呃呃呃呃考试的时候直奔了T3,结果公式推挂了( ...

  2. RHEL 6.5 ----Postfix邮件服务器

    主机名 IP  服务  master 192.168.30.130   slave 192.168.30.131   软件包介绍 包名  介绍  postfix-2.6.6-2.2.el6_1.x86 ...

  3. .net core区域设置方式

    在Startup中配置 默认路由是这个,并不包含区域路由 routes.MapRoute( name: "default", template: "{controller ...

  4. 分布式数据存储 之 Redis(一) —— 初识Redis

    分布式数据存储 之 Redis(一) -- 初识Redis 为什么要学习并运用Redis?Redis有什么好处?我们步入Redis的海洋,初识Redis. 一.Redis是什么 ​ Redis 是一个 ...

  5. 【转】PowerManager 与 WakeLock

    PowerManager 与 WakeLock PowerManager 用来控制设备的电源状态. 而PowerManager.WakeLock 也称作唤醒锁, 是一种保持 CPU 运转防止设备休眠的 ...

  6. Ubuntu14.04 LTS安装 OpenCV-3.0.0-rc1 + QT5.4.1

    I 安装配置工作前的准备 2 II 安装 OpenCV 2 III 安装QT 3 IV 使QT能够使用OpenCV 3 如果顺利,整个过程应该3个小时左右能够完成. 我整个过程用了一早上,配置过程中有 ...

  7. Android内存泄露(全自动篇)

    写了可执行文件启动器Launcher.jar及一些批处理,通过它们就可以自动的以一定的时间间隔提取Hprof和进程的内存信息: 一.需要的库 可执行文件启动器:lib\Launcher.jar 注:关 ...

  8. 洛谷 大牛分站 P1000 超级玛丽游戏

    题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用. 建议完成本题目后继续尝试P1001.P1008. 题目描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级玛丽中的一个场景. *** ...

  9. SQLite -创建数据库

    SQLite -创建数据库 SQLite sqlite3命令用于创建新的SQLite数据库.你不需要有任何特权来创建一个数据库. 语法: sqlite3命令的基本语法如下: $sqlite3 Data ...

  10. 3.12 在运算和比较时使用NULL值

    问题:NULL值永远不会等于或不等于任何值,也包括NULL值自己,但是需要像计算真实值一样计算可为空列的返回值.例如,需要在表emp中查出所有比“WARD”提成(COMM)低的员工,提成为NULL(空 ...