题目背景

这是一道ST表经典题——静态区间最大值

请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1)O(1)

题目描述

给定一个长度为 NN 的数列,和 MM 次询问,求出每一次询问的区间内数字的最大值。

输入输出格式

输入格式:

第一行包含两个整数 N, MN,M ,分别表示数列的长度和询问的个数。

第二行包含 NN 个整数(记为 a_iai​),依次表示数列的第 ii 项。

接下来 MM行,每行包含两个整数 l_i, r_ili​,ri​,表示查询的区间为 [ l_i, r_i][li​,ri​]

输出格式:

输出包含 MM行,每行一个整数,依次表示每一次询问的结果。

输入输出样例

输入样例#1: 复制

8 8
9 3 1 7 5 6 0 8
1 6
1 5
2 7
2 6
1 8
4 8
3 7
1 8
输出样例#1: 复制

9
9
7
7
9
8
7
9

说明

对于30%的数据,满足: 1 \leq N, M \leq 101≤N,M≤10

对于70%的数据,满足: 1 \leq N, M \leq {10}^51≤N,M≤105

对于100%的数据,满足: 1 \leq N \leq {10}^5, 1 \leq M \leq {10}^6, a_i \in [0, {10}^9], 1 \leq l_i \leq r_i \leq N1≤N≤105,1≤M≤106,ai​∈[0,109],1≤li​≤ri​≤N

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int st[][];
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int query(int l,int r){
int k=log2(r-l+);
return max(st[l][k],st[r-(<<k)+][k]);
}
int main(){
n=read();m=read();
for(int i=;i<=n;i++) st[i][]=read();
for(int j=;j<=;j++)
for(int i=;i+(<<j)-<=n;i++)
st[i][j]=max(st[i][j-],st[i+(<<j)-][j-]);
for(int i=;i<=m;i++){
int l=read();
int r=read();
printf("%d\n",query(l,r));
}
}

100

洛谷 P3865 【模板】ST表的更多相关文章

  1. 【洛谷】【st表+模拟】P1311 选择客栈

    [题目描述:] 丽江河边有n 家很有特色的客栈,客栈按照其位置顺序从 1 到n 编号.每家客栈都按照某一种色调进行装饰(总共 k 种,用整数 0 ~ k-1 表示),且每家客栈都设有一家咖啡店,每家咖 ...

  2. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  3. [算法模板]ST表

    [算法模板]ST表 ST表和线段树一样,都能解决RMQ问题(范围最值查询-Range Minimum Query). 我们开一个数组数组\(f[maxn][maxn\log_2]\)来储存数据. 定义 ...

  4. 洛谷—— P3865 【模板】ST表

    https://www.luogu.org/problemnew/show/P3865 题目背景 这是一道ST表经典题——静态区间最大值 请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每 ...

  5. [洛谷P3865]【模板】ST表

    题目大意:区间静态最大值 题解:ST表,zkw线段树 ST表: st[i][j]存[i,i+$j^{2}$-1]的最大值,查询时把区间分成两个长度相同的小区间(可重复) #include<cst ...

  6. skkyk:题解 洛谷P3865 【【模板】ST表】

    我不会ST表 智推推到这个题 发现标签中居然有线段树..? 于是贸然来了一发线段树 众所周知,线段树的查询是log(n)的 题目中"请注意最大数据时限只有0.8s,数据强度不低,请务必保证你 ...

  7. 洛谷 P3865 ST表

    ST表 ST表的功能很简单 它是解决RMQ问题(区间最值问题)的一种强有力的工具 它可以做到O(nlogn)预处理,O(1)查询最值 是一种处理静态区间可重复计算问题的数据结构,一般也就求求最大最小值 ...

  8. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  9. [模板]ST表浅析

    ST表,稀疏表,用于求解经典的RMQ问题.即区间最值问题. Problem: 给定n个数和q个询问,对于给定的每个询问有l,r,求区间[l,r]的最大值.. Solution: 主要思想是倍增和区间d ...

随机推荐

  1. java在线聊天项目0.8版 实现把服务端接收到的信息返回给每一个客户端窗口中显示功能

    迭代器的方式会产生锁定 服务器端增加发送给每个客户端已收到信息的功能 所以当获取到一个socket,并打开它的线程进行循环接收客户端发来信息时,我们把这个内部类的线程Client保存到集合List&l ...

  2. 【计算机网络】DNS的作用以及修改DNS的方法

    1.DNS的作用及修改DNS的方法 1.1.DNS的作用 DNS就是将域名映射成ip的分布式数据库服务器,它的作用如下图: 1.2.修改DNS的方法 常用的DNS服务器 1.114.114.114.1 ...

  3. GIMP素描效果

    1/打开图片,拖动图片到GIMP软件 2/复制两次图层 3/选中最上面的一个图层,mode改为Dodge 4/点击Color,选择Invert,可以看到图片变淡了 5/点击Filters,Distor ...

  4. GIMP选择区域Selection Editor

    如图我要选择该图的衣服部分和这个球的部分, 选择Select下的Selection Editor工具,然后点击魔法棒工具(Fuzzy Select Tool),选择衣服: 需要注意以下白色部分是选择的 ...

  5. python入门(一)作业

    一,流程控制之if...else 1. 如果:女人的年龄>30岁,那么:叫阿姨,否则:叫小妞 age_of_girl = 21 if age_of_girl >30: print('阿姨' ...

  6. Google实践中总结的Python规范,get了吗?

    好的代码风格,给人舒服的感觉,今天介绍一下谷歌的Python风格规范 1 分号 不要在行尾加分号, 也不要用分号将两条命令放在同一行. 2 行长度 每行不超过80个字符:不要使用反斜杠连接行.Pyth ...

  7. 初识Pyhon之准备环境

    安装成功python的运行环境之后,你可能要迫不及待大展身手了 如果你有一定的语言基础,那么基础这一块儿就可以简单的看看就可以了,但是你是一个编程语言的初学者.不着急,慢慢往下看 打开pycharm创 ...

  8. c++-string-1

    解答注意: 我写的时候考虑了: 1) "     my"(设置flag,为true时表示上一个是非空格字符) 2) "hello John"(最后不是空格结尾, ...

  9. ajax动态刷新下拉框

    动态post,避免直接给页面传输大量数据 /** * ajax通过商品刷新供应商 * by_kangyx * @throws IOException */ @RequestMapping(params ...

  10. python基础——13(系统、时间、序列化模块)

    一.时间模块 1.标准库time %y 两位数的年份表示(00-99) %Y 四位数的年份表示(0000-9999) %m 月份(01-12) %d 月中的一天(0-31) %H 24小时制小时数(0 ...