bzoj 2005: [Noi2010]能量采集【莫比乌斯反演】
注意到k=gcd(x,y)-1,所以答案是
\]
去掉前面的乘和后面的减,用莫比乌斯反演来推,设n<m:
\]
\]
\]
\]
分块求即可
#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
long long n,m,mb[N],s[N],q[N],tot,ans;
bool v[N];
long long mobi(long long n,long long m)
{
long long r=0ll;
for(long long i=1,la;i<=n;i=la+1)
{
long long ni=n/i,mi=m/i;
la=min(n/ni,m/mi);
r+=(s[la]-s[i-1])*ni*mi;
}
return r;
}
int main()
{
scanf("%lld%lld",&n,&m);
if(n>m)
swap(n,m);
mb[1]=1;
for(long long i=2;i<=n;i++)
{
if(!v[i])
{
mb[i]=-1;
q[++tot]=i;
}
for(long long j=1;j<=tot&&q[j]*i<=n;j++)
{
long long k=q[j]*i;
v[k]=1;
if(i%q[j]==0)
{
mb[k]=0;
break;
}
mb[k]=-mb[i];
}
}
for(long long i=1;i<=n;i++)
s[i]=s[i-1]+mb[i];
for(long long i=1,la;i<=n;i=la+1)
{
long long ni=n/i,mi=m/i;
la=min(m/mi,n/ni);
ans+=(i+la)*(la-i+1)/2ll*mobi(ni,mi);
}
printf("%lld",2*ans-n*m);
return 0;
}
bzoj 2005: [Noi2010]能量采集【莫比乌斯反演】的更多相关文章
- BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]
题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
- bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...
- BZOJ 2005: [Noi2010]能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 3312 Solved: 1971[Submit][Statu ...
- BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )
一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...
- luogu1447 [NOI2010]能量采集 莫比乌斯反演
link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...
- BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛
分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...
- 【刷题】BZOJ 2005 [Noi2010]能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
随机推荐
- linux mail 发邮件
system('echo "'.$xmlHeader.$xmlBody.$xmlFooter.'" | mail -s "百度新闻源生成成功,地址=>http:// ...
- cobbler ks文件解释--转载
cobbler中ks.cfg文件配置详解 许多系统管理员宁愿使用自动化的安装方法来安装红帽企业 Linux.为了满足这种需要,红帽创建了kickstart安装方法.使用kickstart ...
- Django学习之 - 基础路由系统
路由系统:URL 1:一个URL对应一个类或函数: url(r'^register',reg.register) 函数写法 url(r'^cbv',reg.cbv.as_view()) 类写法 2:通 ...
- HDU 5695 Gym Class
拓扑排序. #include<cstdio> #include <iostream> #include<cstring> #include<cmath> ...
- uva 10559
记忆话搜索 DP 看了网上题解 状态方程真是巧妙 orz #include <cstdio> #include <cstdlib> #include <cmath> ...
- windows 平台使用wireshark命令行抓包
Windows网络流量大,或则需要长时间抓包时,wireshark图形界面使用起来比较麻烦 wireshark 内置 dumpcap命令 Capture interface: -i <inte ...
- 实时更新数据的jQuery图表插件DEMO演示
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 使用微软的 ilasm 和 ildasm 对. net程序进行编译和反编译
为了保证示例的完整性,请先准备好一个 c#写的 exe 程序,或者可以使用我提供的 exe 程序也可以(很简单,为了测试这里仅生成了一个带按钮的 winform,单击按钮提示弹窗) Test WinF ...
- Nginx: 解决connect() to xxxx failed (13: Permission denied) while connecting to upstream的问题
一句话:setsebool httpd_can_network_connect true
- 学习LaTex
MarkDown+Latex 本来想学习latex编辑公式的,在博客园内置的MarkDown编辑器已经支持Latex公式解析了,如下: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2 ...