【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂
题目描述
输入
输出
样例输入
2
1 1
1 1
2 10 1000003
样例输出
142
题解
裸的矩乘快速幂,转移矩阵都给出来了。
将区间求和转化为前缀相减处理,对于矩阵[a1 a2 ... ak],按照题目中的公式推出[a2 a3 ... ak+1],然后由于求和,所以需要再开一个位置记录前缀和。
转移矩阵自己推一推就好了。
注意特判t<=k的情况。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
int n;
ll p , sum[20];
struct data
{
ll v[20][20];
data() {memset(v , 0 , sizeof(v));}
data operator*(const data a)const
{
data ans;
int i , j , k;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
for(k = 1 ; k <= n ; k ++ )
ans.v[i][j] = (ans.v[i][j] + v[i][k] * a.v[k][j]) % p;
return ans;
}
data operator^(const ll a)const
{
data x = *this , ans;
int y = a , i;
for(i = 1 ; i <= n ; i ++ ) ans.v[i][i] = 1;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
}B , A;
ll cal(ll t)
{
if(t < n) return sum[t];
return (B * (A ^ (t - n + 1))).v[1][n];
}
int main()
{
int i , j;
ll l , r;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &B.v[1][i]) , B.v[1][n + 1] = B.v[1][n + 1] + B.v[1][i] , sum[i] = sum[i - 1] + B.v[1][i];
for(i = n ; i >= 1 ; i -- ) scanf("%lld" , &A.v[i][n]) , A.v[i][n + 1] = A.v[i][n];
for(i = 1 ; i < n ; i ++ ) A.v[i + 1][i] = 1;
n ++ , A.v[n][n] = 1;
scanf("%lld%lld%lld" , &l , &r , &p);
for(i = 1 ; i < n ; i ++ ) sum[i] %= p;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
A.v[i][j] %= p , B.v[i][j] %= p;
printf("%lld\n" , (cal(r) - cal(l - 1) + p) % p);
return 0;
}
【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂的更多相关文章
- [bzoj3231][SDOI2008]递归数列——矩阵乘法
题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- [codevs]1250斐波那契数列<矩阵乘法&快速幂>
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...
- P2461 [SDOI2008]递归数列 矩阵乘法+构造
还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...
- bzoj 3231 [Sdoi2008]递归数列——矩阵乘法
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 矩阵乘法裸题. 1018是10^18.别忘了开long long. #include& ...
- [luogu2461 SDOI2008] 递归数列 (矩阵乘法)
传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...
- BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )
矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...
- BZOJ3231: [Sdoi2008]递归数列
BZOJ3231: [Sdoi2008]递归数列 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
随机推荐
- 带有res资源文件的项目 需要导成jar包 供别人使用的解决方法
比如说自己的成品项目,名字是MyObject,需要导出成jar包,让别人的项目调用,但是自己的项目还包含有图片.layout布局.libs里面的依赖包等等: 步骤: 1.MyObject项目需要“is ...
- 使用Android-Debug-Database 在浏览器中查看App的数据库
使用参考:http://www.jianshu.com/p/89ccae3e590b源码地址:https://github.com/amitshekhariitbhu/Android-Debug-Da ...
- python-mysql软件下载地址
http://sourceforge.net/projects/mysql-python/?source=dlp
- 华硕笔记本刷BIOS
笔记本硬件升级后想使用微软的Windows xp mode,之后发现笔记本BIOS中没有虚拟化选项,想通过升级BIOS的方法来解决,结果失败. 升级后出现关机后无法关闭电源指示灯以及风扇的问题,之后只 ...
- Spring MVC异常统一处理(包括普通请求异常以及ajax请求异常)
通常SpringMVC对异常的配置都是返回某个jsp视图给用户,但是通过ajax方式发起请求,即使发生异常,前台也无法获得任何异常提示信息.因此需要对异常进行统一的处理,对于普通请求以及ajax请求的 ...
- (七)maven之阿里云镜像提高jar下载速度
阿里云国内镜像,提高jar包下载速度 镜像 maven默认会从中央仓库下载包,但是下载过几次就知道,下载速度非常慢.镜像就相当于是中央仓库的一个副本,内容和中央仓库完全一样,而且同时也能保证下载速度, ...
- 如何启动Intel VT-x
如何启动Intel VT-x 5 在64bit win7系统下安装了Vmware10,然后安装64位的UbuntuKylin 14.04,想要打开UbuntuKylin,弹出如下对话框: 请问该如何启 ...
- android 焦点 ListView 点击事件获取失败
1. 在ListView 中, 创建一个app_item.xml 布局文件 在布局文件中有如下的代码: <CheckBox android:id="@+id/cb_t ...
- 二、pandas入门
import numpy as np import pandas as pd Series: #创建Series方法1 s1=pd.Series([1,2,3,4]) s1 # 0 1 # 1 2 # ...
- react native 在window 7上配置开发环境-Andorid
参照官方配置:https://facebook.github.io/react-native/docs/getting-started.html 因为在配置的过程中遇到很多问题,在此记录一下. 1.j ...