并不对劲的bzoj2820:p2257:YY的GCD
题目大意
\(t\)(\(t\leq10^4\))组数据,给定\(n,m\)(\(n,m\leq10^6\))求
\]
题解
这个人(点这里)讲得很清楚\(\color{white}{\text{shing太强了}}\)
代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define maxn 10000010
#define lim (maxn-10)
#define LL long long
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(LL x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int t,n,m,p[maxn],no[maxn],mu[maxn],cnt;
LL f[maxn];
int main()
{
no[1]=mu[1]=1;
rep(i,2,lim)
{
if(!no[i])p[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*p[j]<=lim;j++)
{
no[i*p[j]]=1;
if(i%p[j]==0){mu[i*p[j]]=0;break;}
mu[i*p[j]]=-mu[i];
}
}
rep(i,1,cnt)for(int j=p[i];j<=lim;j+=p[i])f[j]+=mu[j/p[i]];
rep(i,1,lim)f[i]+=f[i-1];
t=read();
while(t--)
{
n=read(),m=read();
if(n>m)swap(n,m);LL ans=0;
for(int l=1,r=0;l<=n;l=r+1)r=min(n/(n/l),m/(m/l)),ans+=(LL)(n/l)*(LL)(m/l)*(f[r]-f[l-1]);
write(ans);
}
return 0;
}
并不对劲的bzoj2820:p2257:YY的GCD的更多相关文章
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- 【BZOJ2820】YY的GCD
[BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...
- 洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...
- P2257 YY的GCD
P2257 YY的GCD 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 k ...
- [Luogu P2257] YY的GCD (莫比乌斯函数)
题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...
- 题解 P2257 YY的GCD
P2257 YY的GCD 解题思路 果然数论的题是真心不好搞. 第一个莫比乌斯反演的题,好好推一下式子吧..(借鉴了blog) 我们要求的答案就是\(Ans=\sum\limits_{i=1}^{n} ...
- 【反演复习计划】【bzoj2820】YY的GCD
这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...
- 【BZOJ2820】YY的GCD [莫比乌斯反演]
YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...
- BZOJ2820:YY的GCD——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2820 Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
随机推荐
- python002 Python3 基础语法
python002 Python3 基础语法 编码默认情况下,Python 3 源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串. 当然你也可以为源码文件指定不同的编码: # -* ...
- Dividing coins (01背包)
It’s commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nic ...
- BZOJ 3039: 玉蟾宫【dp】
Description 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地.这片土地被分成N*M个格子,每个格子里写着'R'或者' ...
- hdu 3879 最大权闭合图(裸题)
/* 裸的最大权闭合图 解:参见胡波涛的<最小割模型在信息学竞赛中的应用 #include<stdio.h> #include<string.h> #include< ...
- 调用BOS服务保存一个单据的简化示例
IMetaDataService metadataService = ServiceHelper.GetService<IMetaDataService>(); // 加载元数据 Form ...
- 【BZOJ2006】超级钢琴(RMQ,priority_queue)
题意: 思路: 用三元组(i, l, r)表示右端点为i,左端点在[l, r]之间和最大的区间([l, r]保证是对于i可行右端点区间的一个子区间),我们用堆维护一些这样的三元组. 堆中初始的元素为每 ...
- PatentTips - Wear Leveling for Erasable Memories
BACKGROUND Erasable memories may have erasable elements that can become unreliable after a predeterm ...
- Dividing--hdu1059(动态规划)
Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...
- 原生js中stopPropagation,preventDefault,return false的区别
1.stopPropagation:阻止事件的冒泡,但不阻止事件的默认行为. 最好莫过于用例子说明: <div id='div' onclick='alert("div") ...
- SpringMVC Ueditor1.4.3 未找到上传数据
ueditor自事的fileupload组件与spring的有冲突.将那个类BinaryUploader 重写就可以了 return storageState; ...