官方网址:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

首先认识单词:metrics:  ['mɛtrɪks] : 度量‘指标     curve : [kɝv]  :  曲线

这个方法主要用来计算ROC曲线面积的;

sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True)

Parameters :

y_true : 数组,shape = [样本数]

在范围{0,1}或{-1,1}中真正的二进制标签。如果标签不是二进制的,则应该显式地给出pos_label

y_score : 数组, shape = [样本数]

目标得分,可以是积极类的概率估计,信心值,或者是决定的非阈值度量(在某些分类器上由“decision_function”返回)。

pos_label:int or str, 标签被认为是积极的,其他的被认为是消极的。

sample_weight: 顾名思义,样本的权重,可选择的

drop_intermediate:  boolean, optional (default=True)

 是否放弃一些不出现在绘制的ROC曲线上的次优阈值。这有助于创建更轻的ROC曲线

Returns :

fpr : array, shape = [>2]                增加假阳性率,例如,i是预测的假阳性率,得分>=临界值[i]

tpr : array, shape = [>2]                增加真阳性率,例如,i是预测的真阳性率,得分>=临界值[i]。

thresholds : array, shape = [n_thresholds]

减少了用于计算fpr和tpr的决策函数的阈值。阈值[0]表示没有被预测的实例,并且被任意设置为max(y_score) + 1

要弄明白ROC的概念可以参考 :https://www.deeplearn.me/1522.html

介绍ROC曲线的两个重要指标:

真阳性率 = true positive rate = TPR = TP/ (TP + FN)

可以这样理解:真阳性率就是在标准的阳性(标准的阳性就等于真阳性加假阴性=TP + FN)中,同时被检测为阳性的概率,有点绕,自行理解。

假阳性率 = false positive rate = FPR = FP / (FP+TN)

可以这样理解:假阳性就是在标准的阴性(标准的阴性就等于假阳性加真阴性=FP + TN)中,被检测为阳性的概率。很好理解的,本来是阴性,检测成了阳性的概率就是假阳性率呗。

ROC曲线就由这两个值绘制而成。接下来进入sklearn.metrics.roc_curve实战,找遍了网络也没找到像我一样解释这么清楚的。

import numpy as np
from sklearn import metrics
y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
y 就是标准值,scores 是每个预测值对应的阳性概率,比如0.1就是指第一个数预测为阳性的概率为0.1,很显然,y 和 socres应该有相同多的元素,都等于样本数。pos_label=2 是指在y中标签为2的是标准阳性标签,其余值是阴性。
所以在标准值y中,阳性有2个,后两个;阴性有2个,前两个。 接下来选取一个阈值计算TPR/FPR,阈值的选取规则是在scores值中从大到小的以此选取,于是第一个选取的阈值是0.8 scores中大于阈值的就是预测为阳性,小于的预测为阴性。所以预测的值设为y_=(0,0,0,1),0代表预测为阴性,1代表预测为阳性。可以看出,真阴性都被预测为阴性,真阳性有一个预测为假阴性了。 FPR = FP / (FP+TN) = 0 / 0 + 2 = 0 TPR = TP/ (TP + FN) = 1 / 1 + 1 = 0.5 thresholds = 0.8 我们验证一下结果 print(fpr[0],tpr[0],thresholds[0]) 同代码结果一致,其余的就不演示了,剩下的阈值一次等于 0.4 0.35 0.1 自行验证。 最后结果等于 print(fpr,'\n',tpr,'\n',thresholds) 全部代码
import numpy as np
from sklearn import metrics
y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
print(fpr,'\n',tpr,'\n',thresholds)

---------------------
作者:z智慧
来源:CSDN
原文:https://blog.csdn.net/u014264373/article/details/80487766
版权声明:本文为博主原创文章,转载请附上博文链接!

sklearn.metrics.roc_curve的更多相关文章

  1. sklearn.metrics.roc_curve使用说明

    roc曲线是机器学习中十分重要的一种学习器评估准则,在sklearn中有完整的实现,api函数为sklearn.metrics.roc_curve(params)函数. 官方接口说明:http://s ...

  2. sklearn.metrics中的评估方法

    https://www.cnblogs.com/mindy-snail/p/12445973.html 1.confusion_matrix 利用混淆矩阵进行评估 混淆矩阵说白了就是一张表格- 所有正 ...

  3. sklearn.metrics中的评估方法介绍(accuracy_score, recall_score, roc_curve, roc_auc_score, confusion_matrix)

    1 accuracy_score:分类准确率分数是指所有分类正确的百分比.分类准确率这一衡量分类器的标准比较容易理解,但是它不能告诉你响应值的潜在分布,并且它也不能告诉你分类器犯错的类型.常常误导初学 ...

  4. Python Sklearn.metrics 简介及应用示例

    Python Sklearn.metrics 简介及应用示例 利用Python进行各种机器学习算法的实现时,经常会用到sklearn(scikit-learn)这个模块/库. 无论利用机器学习算法进行 ...

  5. [sklearn]性能度量之AUC值(from sklearn.metrics import roc_auc_curve)

    原创博文,转载请注明出处! 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积. 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于 ...

  6. sklearn.metrics.mean_absolute_error

    注意多维数组 MAE 的计算方法 * >>> from sklearn.metrics import mean_absolute_error >>> y_true ...

  7. 量化预测质量之分类报告 sklearn.metrics.classification_report

    classification_report的调用为:classification_report(y_true, y_pred, labels=None, target_names=None, samp ...

  8. sklearn 下距离的度量 —— sklearn.metrics

    1. pairwise from sklearm.metrics.pairwise import pairwise_distance 计算一个样本集内部样本之间的距离: D = np.array([n ...

  9. sklearn.metrics import precision_recall_fscore_support

    二分类/多分类/多标签 对于二分类来说,必须定义一些matrics(f1_score,roc_auc_score).在这些case中,缺省只评估正例的label,缺省的正例label被标为1(可以通过 ...

随机推荐

  1. AutoIT: 如何从excel中取值并判断条件?

    #include <Excel.au3> $excel = _ExcelBookAttach("Book1.xlsx" ,"FileName") ; ...

  2. ArcGIS for JavaScript 3.9 本机IIS部署

    arcgis 官方网站经常会打不开,天朝人民都懂得!因此将arcgis for javascript 配置到本机访问 首先esri中国下载最新版3.9的API: http://support.esri ...

  3. UVa 12717 Fiasco (BFS模拟)

    题意:给定一个错误代码,让你修改数据,使得它能够输出正确答案,错误代码是每次取最短的放入. 析:那么我们就可以模拟这个过程,然后修改每条边的权值,使得它能输出正确答案. 代码如下: #pragma c ...

  4. jsp请求转发小例子(转载)

    在服务器端对客户端请求时行转发对其它的对象,如果jsp网页或Servlet 用三个 jsp网页来演示转发: forword1.jsp, 用来提交表单, 将表单内容提交给 forwrod2.jsp,  ...

  5. GIT 初始化 user.name user.email

    git config --global user.name "username" git config --global user.email "email"

  6. python 匿名函数 lambda

    一.lambda使用语法: 关键字lambda表示匿名函数,冒号前面的x表示函数参数,冒号后面只能有一个表达式,不用写return,返回值就是该表达式的结果. >>> list(ma ...

  7. python 高阶函数三 filter()和sorted()

    一.filter()函数 filter()接收一个函数和一个序列.filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素. >>> ...

  8. 解决Bad owner or permissions on .ssh/config 的问题

    在使用gei fetch 或者 sftp的时候,出现 Bad owner or permissions on .ssh/config的问题的解决办法 修改.ssh/config的权限: sudo ch ...

  9. python正则表达式_总结

    正则表达式: 作用:正则表达式是用来查找字符串的. 之前:使用正则表达式首先要导入re模块(import re) re.match -- 从字符串的第一个单词开始匹配字符串.如果匹配到则返回一个对象: ...

  10. linux自动删除30天前的日志文件

    linux应用总结: 自动删除n天前的日志文件: . 使用的命令格式如下: find 对应目录 -mtime +天数 -name "文件名" -exec -rm -rf -name ...