NOIp 2014 寻找道路【图的遍历/最短路】By cellur925
比较裸的图论,结果自己还是没做出来,我真菜。
我们根据题意,只要把不能通向终点的点求出,然后再分别以这些点为起点,求出它们能到达的点,这些点也不能在路径上。
之后跑一个最短路即可。
注意以上操作均是在建反图的基础上进行的。我们交换起终点,这是等价的。
细节操作:开新数组记录不能到达的点,因为搜索还没结束,会重复。
Code
#include<cstdio>
#include<algorithm>
#include<queue> using namespace std;
const int inf=0x3f3f3f3f; int n,m,x,y,s,t,tot,qwq;
int head[],vis[],laz1[],dis[],tmp[],laz[];
struct node{
int to,next;
}edge[]; void add(int x,int y)
{
edge[++tot].to=y;
edge[tot].next=head[x];
head[x]=tot;
}
void dfs(int x)
{
laz1[x]=;
for(int i=head[x];i;i=edge[i].next)
{
int y=edge[i].to;
if(laz1[y]) continue;
dfs(y);
}
} void spfa()
{
queue<int>q;
for(int i=;i<=n;i++) dis[i]=inf;
q.push(t);vis[t]=;dis[t]=;
while(!q.empty())
{
int x=q.front();q.pop();vis[x]=;
if(!laz[x]) continue;
for(int i=head[x];i;i=edge[i].next)
{
int y=edge[i].to;
if(dis[y]>dis[x]+&&laz[y])
{
dis[y]=dis[x]+;
if(!vis[y]) q.push(y),vis[y]=;
}
}
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d",&x,&y),add(y,x);
scanf("%d%d",&s,&t);
dfs(t);
if(!laz1[s])
{
printf("-1");
return ;
}
for(int i=;i<=n;i++)
{
if(!laz1[i])
{
for(int k=head[i];k;k=edge[k].next)
tmp[++qwq]=edge[k].to;
}
else laz[i]=;
}
for(int i=;i<=qwq;i++) laz[tmp[i]]=;
spfa();
printf("%d",dis[s]);
return ;
}
NOIp 2014 寻找道路【图的遍历/最短路】By cellur925的更多相关文章
- [NOIP 2014] 寻找道路
[题目链接] http://uoj.ac/problem/19 [算法] 首先,在反向图上从终点广搜,求出每个点是否可以在答案路径中 然后在正向图中求出源点至终点的最短路,同样可以使用广搜 时间复杂度 ...
- [Luogu P2296][NOIP 2014]寻找道路
emmm交了第8次才过. 这道题目测一道单源最短路问题,因此dijkstra或者spfa板子先准备好.因为题中对最短路有限定: 路径上的所有点的出边所指向的点都直接或间接与终点连通. 在满足条件1的情 ...
- 洛谷P2296 寻找道路 [拓扑排序,最短路]
题目传送门 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...
- niop 2014寻找道路
/* 乍一看就是个最短路 SFPA 但是要保证路径上的所有点的出边所指向的点都直接或间接与终点连通. 这一点就蛋疼了0.0 开始想的是正着跑一边 每一个点的所有边都能符合条件 那这个点就符合条件0.0 ...
- 【NOI P模拟赛】寻找道路(bfs,最短路)
题面 一道特殊的最短路题. 给一个 n n n 个点 m m m 条有向边的图,每条边上有数字 0 \tt0 0 或 1 \tt1 1 ,定义一个路径的长度为这个路径上依次经过的边上的数字拼在一起后在 ...
- Codevs 3731 寻找道路 2014年 NOIP全国联赛提高组
3731 寻找道路 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找 ...
- noip寻找道路
题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...
- NOIP 2014 提高组 Day2
期望得分:100+60+30=190 实际得分:70+60+30=160 https://www.luogu.org/problem/lists?name=&orderitem=pid& ...
- NOIP2014 寻找道路
2.寻找道路 (road.cpp/c/pas) [问题描述] 在有向图G中,每条边的长度均为1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1.路径上的所有点的出边所指 ...
随机推荐
- SQL Server vNext CTP 1.2
https://msdn.microsoft.com/en-us/library/mt788653.aspx
- JavaScript 中 for 循环
在ECMAScript5(简称 ES5)中,有三种 for 循环,分别是: 简单for循环 for-in forEach 在2015年6月份发布的ECMAScript6(简称 ES6)中,新增了一种循 ...
- httpclient失败重连机制
HttpClient 底层会默认超时自动重发3次,DefaultHttpRequestRetryHandler源码 /** * Create the request retry handler ...
- Android 自己定义UI文章汇总
<Android ListView分类/分组效果 - 第一种实现方式> <Android ListView分类/分组效果 - 另外一种实现方式> <Android Lis ...
- Deepin-文件目录介绍
请参见这篇文件:来自一个强大的网站 我主要介绍的就是: 下面所列文件,全部添加进了path目录(Linux查找命令,请参见man.linux,无论是find 或者是 which等) Deepin默认可 ...
- 【转】Selenium2学习路线
课程大纲:第一部分:基础入门 第一课: SELENIUM2的原理介绍及环境搭建本节课主要讲解SELENIUM2的原理,让大家了解SELENIUM2的发展历程,同时解惑大家对自动化测试中产生的一些误区. ...
- 抓包工具Fiddler使用宝典之捕获手机报文
Fiddler 是通过代理来实现数据捕获的.对 Android 手机来说,也是通过将网络连接的代理指向 PC 机的 Fiddler port.来实现数据包的拦截. 以下,我以我的一次实践为例,向大家介 ...
- 找不到方法 Void Newtonsoft.Json.JsonConvert.set_DefaultSettings
找不到方法 Void Newtonsoft.Json.JsonConvert.set_DefaultSettings 因为 Newtonsoft.Json.dll 的版本号问题: C:\Program ...
- hdu 4970 Killing Monsters(数组的巧妙运用) 2014多校训练第9场
pid=4970">Killing Monsters ...
- 【IOS】启动画面
总述: 两种方式,一种是使用系统自带的.按规则定义启动图片名称就可以,显示为1秒,要想延长时间,用[nsthread sleepForTimeInterval:5.0] ,还有一种就是自己定义ui ...