BZOJ 3930 【CQOI2015】 选数
题目链接:选数
这种SB题我都Wa飞了,彻底没救系列~
首先,我们可以发现1,如果我们选了两个不同的数,那么它们的\(\gcd\)不会超过\(r-l+1\)。于是,我们可以设一个\(f_i\)表示任取\(n\)个数,它们的\(\gcd\)为\(ik\)的方案数,最后我们要的答案就是\(f_1\)。我们考虑容斥一下,在求\(f_i\)的时候,先把\([l,r]\)中是\(ik\)倍数的数全部拿出来,然后任意选\(n\)个,这样选出来的数他们的\(\gcd\)一定是\(ik\)的倍数。于是,我们只需减去\(f_{2i},f_{3i},\dots,f_{\lfloor \frac{r-l+1}{i}\rfloor i}\)即可。
这样的话,有可能还有些数\(\gcd\)是\(ik\)的倍数我们却没统计到。由于这些未统计的\(\gcd\)肯定比\(r-l+1\)大,那么肯定是选了\(n\)个相同的数,于是这一部分就可以直接算了。
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010
#define mod 1000000007 using namespace std;
typedef long long llg; int n,k,l,r;
llg f[maxn]; void gi(llg &x){if(x>=mod) x%=mod;}
llg mi(llg a,int b){
llg s=1;
while(b){
if(b&1) s=s*a,gi(s);
a=a*a,gi(a); b>>=1;
}
return s;
} int main(){
File("a");
scanf("%d %d %d %d",&n,&k,&l,&r);
int rr=min(r/k,r-l+1);
for(int i=rr,x,y=rr*k,z;i;i--,y-=k){
x=(r/y)-(l/y); if(l%y==0) x++; z=(y>=l);
for(int j=i<<1;j<=rr;j+=i) f[i]-=f[j],(f[i]+=mod)%=mod,z+=(j*k>=l);
f[i]+=mi(x,n)-x+z; (f[i]+=mod)%=mod;
}
printf("%lld",(f[1]+mod)%mod);
return 0;
}
BZOJ 3930 【CQOI2015】 选数的更多相关文章
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- 【刷题】BZOJ 3930 [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- 【递推】BZOJ 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数【快速幂+容斥】
参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...
- bzoj 3930: [CQOI2015]选数【递推】
妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- 【BZOJ】3930: [CQOI2015]选数
题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...
- 3930: [CQOI2015]选数
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1958 Solved: 979[Submit][Status][Discuss] Descripti ...
随机推荐
- 【BZOJ4524】[Cqoi2016]伪光滑数 堆(模拟搜索)
[BZOJ4524][Cqoi2016]伪光滑数 Description 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M ...
- maven修改本地仓库地址配置文件
本地仓库是远程仓库的一个缓冲和子集,当你构建Maven项目的时候,首先会从本地仓库查找资源,如果没有,那么Maven会从远程仓库下载到你本地仓库.这样在你下次使用的时候就不需要从远程下载了.如果你所需 ...
- Nginx降权启动
给Nginx服务降权,用lol用户跑Nginx,给开发及运维设置普通账号,只要和lol同组即可管理Nginx,该方案解决了Nginx管理问题,防止root分配权限过大. 开发人员使用普 ...
- sqlserver字符串多行合并为一行
--创建测试表 CREATE TABLE [dbo].[TestRows2Columns]( [Id] [,) NOT NULL, [UserName] [nvarchar]() NULL, [Sub ...
- The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path(Myeclipse添加Server Library)
网上找练习的项目导入到myeclipse项目发现每个JSP 出现错误The superclass "javax.servlet.http.HttpServlet" was not ...
- 基于Nginx+FastDFS搭建图片文件系统
Nginx+fastdfs:https://www.cnblogs.com/chiangchou/p/fastdfs.html#_label0_1 缩略图:https://blog.csdn.net/ ...
- Can you solve this equation?---hdu2199(二分)
http://acm.hdu.edu.cn/showproblem.php?pid=2199 给出y的值求x: 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 = Y x是0到100的 ...
- Python 读取写入配置文件 —— ConfigParser
Python 读取写入配置文件 —— ConfigParser Python 读取写入配置文件很方便,可使用内置的 configparser 模块:可查看源码,如博主本机地址: “C:/python2 ...
- 关于sed -i 修改selinux 的软链接文件的问题
关于sed -i 修改selinux 的软链接文件的问题 http://blog.csdn.net/kumu_linux/article/details/8598005 因为sed -i /etc/s ...
- fold change的意义[转载]
转自:https://zhidao.baidu.com/question/2052933434631672387.html 1.解释 解释:表达值倍数变化 ,分析,消除可能的混杂因素,必要时可以用读段 ...