BZOJ 3930 【CQOI2015】 选数
题目链接:选数
这种SB题我都Wa飞了,彻底没救系列~
首先,我们可以发现1,如果我们选了两个不同的数,那么它们的\(\gcd\)不会超过\(r-l+1\)。于是,我们可以设一个\(f_i\)表示任取\(n\)个数,它们的\(\gcd\)为\(ik\)的方案数,最后我们要的答案就是\(f_1\)。我们考虑容斥一下,在求\(f_i\)的时候,先把\([l,r]\)中是\(ik\)倍数的数全部拿出来,然后任意选\(n\)个,这样选出来的数他们的\(\gcd\)一定是\(ik\)的倍数。于是,我们只需减去\(f_{2i},f_{3i},\dots,f_{\lfloor \frac{r-l+1}{i}\rfloor i}\)即可。
这样的话,有可能还有些数\(\gcd\)是\(ik\)的倍数我们却没统计到。由于这些未统计的\(\gcd\)肯定比\(r-l+1\)大,那么肯定是选了\(n\)个相同的数,于是这一部分就可以直接算了。
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010
#define mod 1000000007 using namespace std;
typedef long long llg; int n,k,l,r;
llg f[maxn]; void gi(llg &x){if(x>=mod) x%=mod;}
llg mi(llg a,int b){
llg s=1;
while(b){
if(b&1) s=s*a,gi(s);
a=a*a,gi(a); b>>=1;
}
return s;
} int main(){
File("a");
scanf("%d %d %d %d",&n,&k,&l,&r);
int rr=min(r/k,r-l+1);
for(int i=rr,x,y=rr*k,z;i;i--,y-=k){
x=(r/y)-(l/y); if(l%y==0) x++; z=(y>=l);
for(int j=i<<1;j<=rr;j+=i) f[i]-=f[j],(f[i]+=mod)%=mod,z+=(j*k>=l);
f[i]+=mi(x,n)-x+z; (f[i]+=mod)%=mod;
}
printf("%lld",(f[1]+mod)%mod);
return 0;
}
BZOJ 3930 【CQOI2015】 选数的更多相关文章
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- 【刷题】BZOJ 3930 [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- 【递推】BZOJ 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数【快速幂+容斥】
参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...
- bzoj 3930: [CQOI2015]选数【递推】
妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- 【BZOJ】3930: [CQOI2015]选数
题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...
- 3930: [CQOI2015]选数
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1958 Solved: 979[Submit][Status][Discuss] Descripti ...
随机推荐
- linux 中 ll 命令显示 的大小 是什么单位的啊?
ll显示的是字节,可以使用-h参数来提高文件大小的可读性,另外ll不是命令,是ls -l的别名 ls -al 是以字节单位显示文件或者文件夹大小: 字节b,千字节kb, 1G=1024M=1024 ...
- 【BZOJ4003】[JLOI2015]城池攻占 可并堆
[BZOJ4003][JLOI2015]城池攻占 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号 ...
- 170508、忘记jenkins密码或者修改jenkins密码
刚配置好jenkins时,不知道密码是什么,很多同学都有这种烦恼把,各种抓狂. 操作步骤: 1.进入jenkins用户目录 cd /home/rick/.jenkins/users/admin ps ...
- [EF]vs15+ef6+mysql这个问题,你遇到过么?
写在前面 因为最近用mysql比较多,所以想了解下ef+mysql的内容,发现ef连接mysql数据库,还有那么一段路折腾.折腾到最后,发疯了. 步骤 这里采用db first的方式来使用ef. 通过 ...
- Android官方架构组件介绍之LiveData
LiveData LiveData是一个用于持有数据并支持数据可被监听(观察).和传统的观察者模式中的被观察者不一样,LiveData是一个生命周期感知组件,因此观察者可以指定某一个LifeCycle ...
- ZOJ 80ers' Memory
80ers' Memory Time Limit: 1 Second Memory Limit: 32768 KB I guess most of us are so called 80er ...
- 洛谷P1736 创意吃鱼法 dp
正解:dp 解题报告: 早就想写dp的题目辣!我发现我的dp好差啊QAQ所以看到列表的小朋友写dp的题目就跟着他们的步伐做下题好辣QwQ 这题的话没有那——么难,大概说下趴QwQ 首先说下题意 前面一 ...
- 4.windows如何导入python包
python链接:https://www.python.org/downloads/release/python-2715/ pip链接:https://pypi.org/project/pip/#f ...
- vue开发笔记
1.一定要弄明白什么是数据驱动,以前jQuery操作dom的那种思维模式可以不去考虑,在类似框架中任何一个效果的完成都是由数据驱动来完成的. 2.以.vue作为扩展名的文件,是vue组件,他是一个类, ...
- C++类型前置声明
前言 本文总结了c++中前置声明的写法及注意事项,列举了哪些情况可以用前置声明来降低编译依赖. 前置声明的概念 前置声明:(forward declaration), 跟普通的声明一样,就是个声明, ...