B - Halloween Costumes

Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu

Submit

Status

Practice

LightOJ 1422

Description

Gappu has a very busy weekend ahead of him. Because, next weekend is Halloween, and he is planning to attend as many parties as he can. Since it’s Halloween, these parties are all costume parties, Gappu always selects his costumes in such a way that it blends with his friends, that is, when he is attending the party, arranged by his comic-book-fan friends, he will go with the costume of Superman, but when the party is arranged contest-buddies, he would go with the costume of ‘Chinese Postman’.

Since he is going to attend a number of parties on the Halloween night, and wear costumes accordingly, he will be changing his costumes a number of times. So, to make things a little easier, he may put on costumes one over another (that is he may wear the uniform for the postman, over the superman costume). Before each party he can take off some of the costumes, or wear a new one. That is, if he is wearing the Postman uniform over the Superman costume, and wants to go to a party in Superman costume, he can take off the Postman uniform, or he can wear a new Superman uniform. But, keep in mind that, Gappu doesn’t like to wear dresses without cleaning them first, so, after taking off the Postman uniform, he cannot use that again in the Halloween night, if he needs the Postman costume again, he will have to use a new one. He can take off any number of costumes, and if he takes off k of the costumes, that will be the last k ones (e.g. if he wears costume A before costume B, to take off A, first he has to remove B).

Given the parties and the costumes, find the minimum number of costumes Gappu will need in the Halloween night.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing an integer N(1 ≤ N ≤ 100) denoting the number of parties. Next line contains N integers, where the ith integer ci(1 ≤ ci ≤ 100) denotes the costume he will be wearing in party i. He will attend party 1 first, then party 2, and so on.

Output

For each case, print the case number and the minimum number of required costumes.

Sample Input

2

4

1 2 1 2

7

1 2 1 1 3 2 1

Sample Output

Case 1: 3

Case 2: 4

FAQ | About Virtual Judge | Forum | Discuss | Open Sourc

给一个问题

目标字符串 aaabbccaaa

一次只能在固定的区间内,将区间内的字符全都变成相同的字符。问你从一个空字符串到目标字符串最少几次可以变成。

解决方法和这道题目的解法是如出一辙。其实二者是完全一样的问题,一件穿了多少天就相当于在一个固定的区间覆盖了一个字符。

状态转移方程:

dp[i][j]=dp[i+1][j]+1;

dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k+1][j]).{k=i+1…j}

做动态规划的题目应该经常思考状态转移方程式怎么得来的。状态方程的意思理解还远远不够。

联系题目,最坏的结果是每遇到一天都新穿一件衣服。那么最优的情况是怎么得来的,自然是穿上一件衣服不用脱,因为在后来可以派上用场,这样就少新买一件衣服。

我们可以从区间的左端或者右端开始,和区间里的数比较,相等的话就划分区间。

这样的话可以得到全局最优解,注意递推的时候,一定要使子状态都计算过了。

关于区间DP,可以参照这个博客

http://blog.csdn.net/dacc123/article/details/50885903

从左端开始比较:

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
int n;
int a[105];
int dp[105][105];
int main()
{
int t;
scanf("%d",&t);
int cas=0;
while(t--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
memset(dp,0,sizeof(dp)); for(int i=n;i>=1;i--)
{
for(int j=i;j<=n;j++)
{
dp[i][j]=dp[i+1][j]+1;
for(int k=i+1;k<=j;k++)
{
if(a[i]==a[k])
dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k+1][j]);
}
}
}
printf("Case %d: %d\n",++cas,dp[1][n]); }
return 0;
}

从右端开始比较

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
int n;
int a[105];
int dp[105][105];
int main()
{
int t;
scanf("%d",&t);
int cas=0;
while(t--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
memset(dp,0,sizeof(dp)); for(int l=0;l<n;l++)
{
for(int i=1;i+l<=n;i++)
{
int j=i+l;
dp[i][j]=dp[i][j-1]+1;
for(int k=i;k<=j-1;k++)
{
if(a[j]==a[k])
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j-1]);
}
}
}
printf("Case %d: %d\n",++cas,dp[1][n]); }
return 0;
}

LightOj 1422 Halloween Costumes(区间DP)的更多相关文章

  1. LightOJ - 1422 Halloween Costumes —— 区间DP

    题目链接:https://vjudge.net/problem/LightOJ-1422 1422 - Halloween Costumes    PDF (English) Statistics F ...

  2. LightOJ 1422 Halloween Costumes 区间dp

    题意:给你n天需要穿的衣服的样式,每次可以套着穿衣服,脱掉的衣服就不能再穿了,问至少要带多少条衣服才能参加所有宴会 思路:dp[i][j]代表i-j天最少要带的衣服 从后向前dp 区间从大到小 更新d ...

  3. light oj 1422 Halloween Costumes (区间dp)

    题目链接:http://vjudge.net/contest/141291#problem/D 题意:有n个地方,每个地方要穿一种衣服,衣服可以嵌套穿,一旦脱下的衣服不能再穿,除非穿同样的一件新的,问 ...

  4. Light OJ 1422 - Halloween Costumes(区间DP 最少穿几件)

    http://www.cnblogs.com/kuangbin/archive/2013/04/29/3051392.html http://www.cnblogs.com/ziyi--caolu/a ...

  5. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  6. LightOJ - 1422 Halloween Costumes (区间dp)

    Description Gappu has a very busy weekend ahead of him. Because, next weekend is Halloween, and he i ...

  7. LightOJ 1422 Halloween Costumes 【 区间dp 】

    区间dp的第一题----- 看题解看了好多~~终于看懂了---55555 dp[i][j] 表示第i天到第j天至少需要多少件衣服 那么第i件衣服只被第i天占用的话, dp[i][j] = dp[i+1 ...

  8. LightOJ 1422 Halloween Costumes (区间DP,经典)

    题意: 有个人要去参加万圣节趴,但是每到一个趴都要换上特定的服装,给定一个序列表示此人要穿的衣服编号(有先后顺序的),他可以套很多件衣服在身上,但此人不喜欢再穿那些脱下的衣服(即脱下后就必须换新的), ...

  9. 【LightOJ 1422】Halloween Costumes(区间DP)

    题 题意 告诉我们每天要穿第几号衣服,规定可以套好多衣服,所以每天可以套上一件新的该号衣服,也可以脱掉一直到该号衣服在最外面.求最少需要几件衣服. 分析 DP,dp[i][j]表示第i天到第j天不脱第 ...

随机推荐

  1. matplotlib中的legend()——用于显示图例

    legend()的一个用法: 当我们有多个 axes时,我们如何把它们的图例放在一起呢?? 我们可以这么做: import matplotlib.pyplot as plt import numpy ...

  2. e554. 在浏览器状态栏中显示信息

    // See also e551 精简的Applet applet.showStatus("Your Message Here"); Related Examples

  3. Eclipse/MyEclipse全屏插件

    此插件可以让Eclipse/MyEclipse的界面全屏,隐藏菜单栏和状态栏! MyEclipse 2014/2015中亲测有效! 插件下载: http://files.cnblogs.com/got ...

  4. 怎么快速了解自己的MySQL服务器?

    From: http://www.cnblogs.com/benshan/archive/2013/01/09/2853097.html 1.查看数据库服务器状态:status Linux 下的MyS ...

  5. apache Storm学习之三-消息可靠性

    4.1 简介 storm可以确保spout发送出来的每个消息都会被完整的处理.本章将会描述storm体系是如何达到这个目标的,并将会详述开发者应该如何使用storm的这些机制来实现数据的可靠处理. 4 ...

  6. iotop详解

    有时我们希望知道到底哪个进程产生了IO,这个时候就需要iotop这个工具了.它的输出和top命令类似,简单直观.官网:http://guichaz.free.fr/iotop/需要Python 2.5 ...

  7. 基于.Net实现前端对话框和消息框

    关于前端对话框.消息框的优秀插件多不胜数.造轮子是为了更好的使用轮子,并不是说自己造的轮子肯定好.所以,这个博客系统基本上都是自己实现的,包括日志记录.响应式布局等等一些本可以使用插件的.好了,废话不 ...

  8. 帝国cms目录结构

    / 系统根目录├d/         附件和数据存放目录 (data) │├file/    附件存放目录 │├js/       JS调用生成目录 │└txt/        内容存文本存放目录 ├ ...

  9. brew 接口的原理

    请查看相关文档的第9章 该文档可以csdn silentjesse帐号下的资源去下载 http://download.csdn.net/detail/silentjesse/5859077

  10. DUBBO功能使用说明

    DUBBO功能使用说明 1 DUBBO概述 DUBBO是阿里巴巴公司的一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案. 相比于其他服务框架,DUBBO有如 ...