BZOJ 2039 人员雇佣(最小割)
最小割的建图模式一般是,先算出总收益,然后再通过网络模型进行割边减去部分权值。
然后我们需要思考什么才能带来收益,什么才能有权值冲突。
s连向选的点,t连向不选的点,那么收益的减少量应该就是将s集和t集分开的割边集。
下面说这道题的建图:
点:
每个人一个点,额外设源汇点。
边:
源向人连这个人能造成的全部收益(当作雇佣所有人,然后此人造成的收益)
人与人之间连两人熟悉度*2,呃,题意问题。
人向汇连雇佣需要花的钱。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF (LL)<<
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... struct Edge{int p, next; LL w;}edge[N*N*];
int head[N], cnt=, s, t, vis[N];
queue<int>Q;
LL ss[N]; void add_edge(int u, int v, LL w){
edge[cnt].p=v; edge[cnt].w=w; edge[cnt].next=head[u]; head[u]=cnt++;
edge[cnt].p=u; edge[cnt].w=; edge[cnt].next=head[v]; head[v]=cnt++;
}
int bfs(){
int i, v;
mem(vis,-); vis[s]=; Q.push(s);
while (!Q.empty()) {
v=Q.front(); Q.pop();
for (int i=head[v]; i; i=edge[i].next) {
if (edge[i].w>&&vis[edge[i].p]==-) vis[edge[i].p]=vis[v]+, Q.push(edge[i].p);
}
}
return vis[t]!=-;
}
LL dfs(int x, LL low){
int i;
LL a, temp=low;
if (x==t) return low;
for (int i=head[x]; i; i=edge[i].next) {
if (edge[i].w>&&vis[edge[i].p]==vis[x]+) {
a=dfs(edge[i].p,min(edge[i].w,temp));
temp-=a; edge[i].w-=a; edge[i^].w+=a;
if (temp==) break;
}
}
if (temp==low) vis[x]=-;
return low-temp;
}
LL dinic(){
LL sum=;
while (bfs()) sum+=dfs(s,INF);
return sum;
}
int main ()
{
int n;
LL ans=, x;
scanf("%d",&n); s=; t=n+;
FOR(i,,n) scanf("%lld",&x), add_edge(i,t,x);
FOR(i,,n) FOR(j,,n) {
scanf("%lld",&x); ss[i]+=x;
if (i==j||!x) continue;
add_edge(i,j,x*);
}
FOR(i,,n) add_edge(s,i,ss[i]), ans+=ss[i];
LL res=dinic();
printf("%lld\n",ans-res);
return ;
}
BZOJ 2039 人员雇佣(最小割)的更多相关文章
- BZOJ 2039 人员雇佣 二元关系 最小割
题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...
- BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)
题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...
- 【BZOJ2039】【2009国家集训队】人员雇佣 [最小割]
人员雇佣 Time Limit: 20 Sec Memory Limit: 259 MB[Submit][Status][Discuss] Description 作为一个富有经营头脑的富翁,小L决 ...
- BZOJ 2039人员雇佣
这道题教会我们一个道理靠谁也不如靠自己. 当时学长已经讲了,然而一脸懵逼,好吧,上网搜题解,二脸懵逼,于是自己动手,丰衣足食.自己推! 首先就是建模了,这道题谁与谁之间建模已经十分明了,超级源点,超级 ...
- 【BZOJ2039】[2009国家集训队]employ人员雇佣 最小割
[BZOJ2039][2009国家集训队]employ人员雇佣 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献 ...
- [BZOJ 2127] happiness 【最小割】
题目链接:BZOJ - 2127 题目分析 首先,每个人要么学文科,要么学理科,所以可以想到是一个最小割模型. 我们就确定一个人如果和 S 相连就是学文,如果和 T 相连就是学理. 那么我们再来确定建 ...
- BZOJ.3532.[SDOI2014]LIS(最小割ISAP 退流)
BZOJ 洛谷 \(LIS\)..经典模型? 令\(f_i\)表示以\(i\)结尾的\(LIS\)长度. 如果\(f_i=1\),连边\((S,i,INF)\):如果\(f_i=\max\limits ...
- BZOJ 2561 最小生成树 | 网络流 最小割
链接 BZOJ 2561 题解 用Kruskal算法的思路来考虑,边(u, v, L)可能出现在最小生成树上,就是说对于所有边权小于L的边,u和v不能连通,即求最小割: 对于最大生成树的情况也一样.容 ...
- bzoj 1497 最大获利 - 最小割
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研 ...
随机推荐
- 20155325 实验三 敏捷开发与XP实践
实验三 敏捷开发与XP实践-1 http://www.cnblogs.com/rocedu/p/4795776.html, Eclipse的内容替换成IDEA 在IDEA中使用工具(Code-> ...
- 20155337 2016-2017-2 《Java程序设计》第一周学习总结
20155337 2016-2017-2 <Java程序设计>第一周学习总结 教材学习内容总结 我们主要学习的是JAVA SE平台也就是标准平台-Java SE四个组成部分:JVM .JR ...
- asp.net self host and urlacl(解决UnHandledException Message:拒绝访问的问题)
命令提示符(管理员权限)需要添加的代码: netsh http add urlacl url=http://*:9999/ user=Everyone listen=yes 其中: url:代码中的u ...
- 【转载】关于RenderTarget的注意事项
原文:关于RenderTarget的注意事项 1. 设置一个RenderTarget会导致viewport变成跟RenderTarget一样大 2. 反锯齿类型必须跟DepthStencilBuffe ...
- nowcoder wannafly 25 E:01串
E:01 串 链接 分析: 线段树维护转移矩阵.每个节点是一个矩阵,区间内的矩阵乘起来就是答案矩阵.矩阵乘法满足结合律,所以线段树维护. 代码: #include<cstdio> #inc ...
- Maven学习(十二)-----Maven POM
Maven POM POM代表项目对象模型.它是 Maven 中工作的基本单位,这是一个 XML 文件.它始终保存在该项目基本目录中的 pom.xml 文件.POM 包含的项目是使用 Maven 来构 ...
- Linux 安装FastDFS<准备>(使用Mac远程访问)
阅读本文需要一定的Linux基础 一 FastDFS简介 fastdfs是用c语言编写的一款开源分布式文件系统, fastdfs为互联网量身定制, 充分考虑了冗余备份, 负载均衡, 线性扩容等机制, ...
- UGUI简易摇杆
实现 直接使用系统自带圆形控件图标 编写脚本, 实现UGUI拖拽事件 将多拽范围限定于给定半径和圆心的圆内 计算出等同于Input.GetAxis()的值,直接控制被控制物体 代码 using Sys ...
- Mybatis-Plus的填坑之路 - Lynwood/wunian7yulian
目录 Mybatis-Plus 我来填坑~ 目录 一.简单介绍 官方说明 : 成绩: 最新版本: 开发层面MyBatis-Plus特色 Mybatis-Plus中的Plus 二.MP的特性 三.MP框 ...
- python怎么安装requests、beautifulsoup4等第三方库
零基础学习python最大的难题之一就是安装所有需要的软件,下面来简单介绍一下如何安装用pip安装requests.beautifulsoup4等第三方库: 方法/步骤 点击开始,在运行里 ...