最小割的建图模式一般是,先算出总收益,然后再通过网络模型进行割边减去部分权值。

然后我们需要思考什么才能带来收益,什么才能有权值冲突。

s连向选的点,t连向不选的点,那么收益的减少量应该就是将s集和t集分开的割边集。

下面说这道题的建图:

点:

  每个人一个点,额外设源汇点。

边:

  源向人连这个人能造成的全部收益(当作雇佣所有人,然后此人造成的收益)

  人与人之间连两人熟悉度*2,呃,题意问题。

  人向汇连雇佣需要花的钱。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF (LL)<<
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... struct Edge{int p, next; LL w;}edge[N*N*];
int head[N], cnt=, s, t, vis[N];
queue<int>Q;
LL ss[N]; void add_edge(int u, int v, LL w){
edge[cnt].p=v; edge[cnt].w=w; edge[cnt].next=head[u]; head[u]=cnt++;
edge[cnt].p=u; edge[cnt].w=; edge[cnt].next=head[v]; head[v]=cnt++;
}
int bfs(){
int i, v;
mem(vis,-); vis[s]=; Q.push(s);
while (!Q.empty()) {
v=Q.front(); Q.pop();
for (int i=head[v]; i; i=edge[i].next) {
if (edge[i].w>&&vis[edge[i].p]==-) vis[edge[i].p]=vis[v]+, Q.push(edge[i].p);
}
}
return vis[t]!=-;
}
LL dfs(int x, LL low){
int i;
LL a, temp=low;
if (x==t) return low;
for (int i=head[x]; i; i=edge[i].next) {
if (edge[i].w>&&vis[edge[i].p]==vis[x]+) {
a=dfs(edge[i].p,min(edge[i].w,temp));
temp-=a; edge[i].w-=a; edge[i^].w+=a;
if (temp==) break;
}
}
if (temp==low) vis[x]=-;
return low-temp;
}
LL dinic(){
LL sum=;
while (bfs()) sum+=dfs(s,INF);
return sum;
}
int main ()
{
int n;
LL ans=, x;
scanf("%d",&n); s=; t=n+;
FOR(i,,n) scanf("%lld",&x), add_edge(i,t,x);
FOR(i,,n) FOR(j,,n) {
scanf("%lld",&x); ss[i]+=x;
if (i==j||!x) continue;
add_edge(i,j,x*);
}
FOR(i,,n) add_edge(s,i,ss[i]), ans+=ss[i];
LL res=dinic();
printf("%lld\n",ans-res);
return ;
}

BZOJ 2039 人员雇佣(最小割)的更多相关文章

  1. BZOJ 2039 人员雇佣 二元关系 最小割

    题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...

  2. BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...

  3. 【BZOJ2039】【2009国家集训队】人员雇佣 [最小割]

    人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MB[Submit][Status][Discuss] Description 作为一个富有经营头脑的富翁,小L决 ...

  4. BZOJ 2039人员雇佣

    这道题教会我们一个道理靠谁也不如靠自己. 当时学长已经讲了,然而一脸懵逼,好吧,上网搜题解,二脸懵逼,于是自己动手,丰衣足食.自己推! 首先就是建模了,这道题谁与谁之间建模已经十分明了,超级源点,超级 ...

  5. 【BZOJ2039】[2009国家集训队]employ人员雇佣 最小割

    [BZOJ2039][2009国家集训队]employ人员雇佣 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献 ...

  6. [BZOJ 2127] happiness 【最小割】

    题目链接:BZOJ - 2127 题目分析 首先,每个人要么学文科,要么学理科,所以可以想到是一个最小割模型. 我们就确定一个人如果和 S 相连就是学文,如果和 T 相连就是学理. 那么我们再来确定建 ...

  7. BZOJ.3532.[SDOI2014]LIS(最小割ISAP 退流)

    BZOJ 洛谷 \(LIS\)..经典模型? 令\(f_i\)表示以\(i\)结尾的\(LIS\)长度. 如果\(f_i=1\),连边\((S,i,INF)\):如果\(f_i=\max\limits ...

  8. BZOJ 2561 最小生成树 | 网络流 最小割

    链接 BZOJ 2561 题解 用Kruskal算法的思路来考虑,边(u, v, L)可能出现在最小生成树上,就是说对于所有边权小于L的边,u和v不能连通,即求最小割: 对于最大生成树的情况也一样.容 ...

  9. bzoj 1497 最大获利 - 最小割

    新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研 ...

随机推荐

  1. 【HDU3117】Fibonacci Numbers

    [HDU3117]Fibonacci Numbers 题面 求斐波那契数列的第\(n\)项的前四位及后四位. 其中\(0\leq n<2^{32}\) 题解 前置知识:线性常系数齐次递推 其实后 ...

  2. 修改Qt源码遇到的问题

    1.修改源码后用新的Qt版本调试Qt工程,程序直接崩溃:

  3. sqlite两表更新update

    1 2 3 4 5 6 7 8 9 10 11 12 UPDATE t1 SET Column1 =   ( SELECT Columnx    FROM t2    WHERE t2. KEY = ...

  4. C#Framework4.0支持异步async/await语法

    由于用户使用的是XP系统,但是程序里异步都是通过async/await代码来实现的,然而async/await需要Framework4.5版本才可以,而XP系统最高只能支持到Framework4.0, ...

  5. Git生成SSH密钥

    git config --global user.name "yangjianliang"配置用户名 git config --global user.email "52 ...

  6. 英特尔® 实感™ 前置摄像头 SR300 和 F200 的比较

    原文地址 简介 SR300 是支持 Microsoft Windows 10 操作系统的第二代英特尔® 实感™ 前置摄像头. 与 F200 摄像头型号相似,SR300 使用编码光深技术,在更小范围内创 ...

  7. Cuteftp连接虚拟机Centos7

    使用Centos7虚拟机时,想要从主机传一些文件到虚拟机,需要使用FTP传输,在主机上装上的CuteFTP的软件,对虚拟机进行配置. 1,首先,要保证虚拟机能够上网 一般装好虚拟机后,只要主机连了网, ...

  8. python—退出ipython3的help()

    退出ipython3的help() 组合键:ctrl+z

  9. Deeplearning - Overview of Convolution Neural Network

    Finally pass all the Deeplearning.ai courses in March! I highly recommend it! If you already know th ...

  10. 做更好的自己 ——读《我是IT小小鸟》有感

    转眼间大一已经过了一大半了,到了大学,才发现初高中时父母所说的“到了大学你就轻松了···”都是骗人的.但我脑海里却一直被这个观点所支配,以至于我在大一上学期里无所事事,不知道干些什么.学习也没重视,分 ...