Description

米特是D星球上一种非常神秘的物质,蕴含着巨大的能量。在以米特为主要能源的D星上,这种米特能源的运输和储
存一直是一个大问题。D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都。这N个城市由N-1条单向高速
通道连接起来,构成一棵以1号城市(首部)为根的树,高速通道的方向由树中的儿子指向父亲。树按深度分层:
根结点深度为0,属于第1层;根结点的子节点深度为1,属于第2层;依此类推,深度为i的结点属于第i+l层。建好
高速通道之后,D星人开始考虑如何具体地储存和传输米特资源。由于发展程度不同,每个城市储存米特的能力不
尽相同,其中第i个城市建有一个容量为A[i]的米特储存器。这个米特储存器除了具有储存的功能,还具有自动收
集米特的能力。如果到了晚上六点,有某个储存器处于未满的状态,它就会自动收集大气中蕴含的米特能源,在早
上六点之前就能收集满;但是,只有在储存器完全空的状态下启动自动收集程序才是安全的,未满而又非空时启动
可能有安全隐患。早上六点到七点间,根节点城市(1号城市)会将其储存器里的米特消耗殆尽。根节点不会自动
搜集米特,它只接受子节点传输来的米特。早上七点,城市之间启动米特传输过程,传输过程逐层递进:先是第2
层节点城市向第1层(根节点城市,即1号城市)传输,直到第1层的储存器满或第2层的储存器全为空;然后是第3
层向第2层传输,直到对于第2层的每个节点,其储存器满或其予节点(位于第3层)的储存器全为空;依此类推,
直到最后一层传输完成。传输过程一定会在晚上六点前完成。
由于技术原因,运输方案需要满足以下条件:
(1)不能让某个储存器到了晚上六点传输结束时还处于非空但又未满的状态,这个时候储存器仍然会启动自动收集
米特的程序,而给已经储存有米特的储存器启动收集程序可能导致危险,也就是说要让储存器到了晚上六点时要么
空要么满;
(2)关于首都——即1号城市的特殊情况,  每天早上六点到七点间1号城市中的米特储存器里的米特会自动被消耗
殆尽,即运输方案不需要考虑首都的米特怎么运走;
(3)除了1号城市,每个节点必须在其子节点城市向它运输米特之前将这座城市的米特储存器中原本存有的米特全部
运出去给父节点,不允许储存器中残存的米特与外来的米特发生混合;
(4)运向某一个城市的若干个来源的米特数量必须完全相同,不然,这些来源不同的米特按不同比例混合之后可能
发生危险。
现在D星人已经建立好高速通道,每个城市也有了一定储存容量的米特储存器。为了满足上面的限制条件,可能需
要重建一些城市中的米特储存器。你可以,也只能,将某一座城市(包括首都)中原来存在的米特储存器摧毁,再
新建一座任意容量的新的米特储存器,其容量可以是小数(在输入数据中,储存器原始容量是正整数,但重建后可
以是小数),不能是负数或零,使得需要被重建的米特储存器的数目尽量少。

Input

第一行是一个正整数N,表示城市的数目。
接下来N行,每行一个正整数,其中的第i行表示第i个城市原来存在的米特储存器的容量。
再接下来是N-I行,每行两个正整数a,b表示城市b到城市a有一条高速通道(a≠b)。
N<500000,A[j]<10^8

Output

输出文件仅包含一行,一个整数,表示最少的被重建(即修改储存器容量)的米特储存器的数目。

Sample Input

5
5
4
3
2
1
1 2
1 3
2 4
2 5

Sample Output

3
【样例解释】
一个最优解是将A[1]改成8,A[3]改成4,A[5]改成2。
这样,2和3运给1的量相等,4和5运给2的量相等,且每天晚上六点的时候,1,2满,3,4,5空,满足所有限制条件。

Solution

题意:给你一颗树,要让每个点的儿子权值相同,且让每个点的权值等于儿子权值之和。问最少改变多少个点的权值。
应该算是一个树形DP吧,题面长度感人。
首先可以发现,如果一个点的权值被确定了,那么整棵树的权值都被确定了。因为点和相邻点的权值是相关的。
计算出每个节点权值不变时根节点的权值,记为$f$数组。显然若$f[x]=f[y]$,那么$x$点和$y$点就是可以一起不被改变的。
找出可以一起不被改变的最大个数,最后用$n$减去个数即为答案。
计算根节点的权值的时候权值会非常大,所以取个log把乘法转化成加法就好了。

Code

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N (500009)
using namespace std; struct Edge{int to,next;}edge[N<<];
int n,u,v,cnt,ans=,Ind[N],a[N];
int head[N],num_edge;
double f[N]; void add(int u,int v)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
head[u]=num_edge;
} void Dfs(int x,int fa)
{
for (int i=head[x]; i; i=edge[i].next)
if (edge[i].to!=fa)
f[edge[i].to]=f[x]+log(1.0*Ind[x]), Dfs(edge[i].to,x);
} int main()
{
scanf("%d",&n);
for (int i=; i<=n; ++i)
scanf("%d",&a[i]);
for (int i=; i<=n-; ++i)
{
scanf("%d%d",&u,&v);
add(u,v); add(v,u); ++Ind[u]; ++Ind[v];
}
for (int i=; i<=n; ++i) --Ind[i];
Dfs(,);
for (int i=; i<=n; ++i) f[i]+=log(1.0*a[i]); sort(f+,f+n+);
for (int i=; i<=n; ++i)
if (f[i]-f[i-]>1e-) cnt=;
else ++cnt,ans=max(ans,cnt);
printf("%d\n",n-ans);
}

BZOJ3573:[HNOI2014]米特运输(树形DP)的更多相关文章

  1. 【BZOJ-3573】米特运输 树形DP

    3573: [Hnoi2014]米特运输 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1023  Solved: 604[Submit][Statu ...

  2. 【bzoj3573】[HNOI2014]米特运输 树形dp

    题目描述 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都.这N个城 ...

  3. [luogu3237 HNOI2014] 米特运输 (树形dp)

    传送门 Description 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. D星上有N个城市,我们将其顺序编号为1到N, ...

  4. LG3237 「HNOI2014」米特运输 树形DP

    问题描述 LG3237 题解 问题转化为: 要求将这棵树,满足 结点 \(x\) 所有孩子权值相等 结点 \(x\) 权值等于所有孩子权值和 将乘法转化为 \(\log\) 加法 \(\mathrm{ ...

  5. BZOJ3573: [Hnoi2014]米特运输(树上乱搞)

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1669  Solved: 1031[Submit][Status][Discuss] Descript ...

  6. BZOJ3573 HNOI2014米特运输

    显然确定一个点的权值后整棵树权值确定.只要算出根节点的权值就能知道两种改法是否等价. 乘的话显然会炸,取log即可.map似乎会出一些问题,sort即可. #include<iostream&g ...

  7. BZOJ3573 [Hnoi2014]米特运输 【贪心】

    题目链接 BZOJ3573 题解 题目又臭又长系列 题意:修改尽量少的点权,使得: ①同个节点的所有儿子点权相同 ②任意非叶节点权值等于其儿子权值之和 容易发现一旦任意一个点权值确定,整棵树权值就确定 ...

  8. bzoj3573[Hnoi2014]米特运输

    http://www.lydsy.com/JudgeOnline/problem.php?id=3573 好吧,虽然这是day1最后一题,但却是最水的一题....(前提:看懂题目) 仔细看题! 仔细看 ...

  9. BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash

    BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash 题意: 给你一棵树每个点有一个权值,要求修改最少的权值,使得每个节点的权值等于其儿子的权值和且儿子的权值都相等. 分析: 首先我们 ...

随机推荐

  1. 搭建jdk环境

    jdk(java develop toolkit)主要包括:编译程序的javac,运行程序的java,javaAPI类库. 主要步骤: 下载jdk安装包 设置环境变量(JAVA_HOME,Path,C ...

  2. NodeJS,MongoDB,Vue,VSCode 集成学习

    NodeJS,MongoDB,Vue,VSCode 集成学习 开源项目地址:http://www.mangdot.com

  3. SqlServer常用语句

    首先,写这个的原因是我其实sql语句不太行,总觉得自己写得很乱,好像也没有系统学习过,借此复习和与大家探讨 No.1 关于查询时间区间是否重叠的sql语句 问题是这样:插入之前,想查询同User是否其 ...

  4. Java学习--java中的集合框架、Collection接口、list接口

    与数组相比:1.数组的长度固定,而集合的长度可变2.数组只能通过下表访问元素,类型固定,而有的集合可以通过任意类型查找所映射的具体对象 java集合框架:collection(list序列,queue ...

  5. 撩课-Python-每天5道面试题-第5天

    一. 给定一个圆心和半径, 以及一个点坐标, 判定该点是否在圆内; 例如: 用户输入圆心: (1, 2) 半径: 2.5 测试点为(2, 2)结果: 判定测试点是在圆内 思路: 结合勾股定理, 计算测 ...

  6. Java集成groovy之GroovyShell、GroovyScriptEngine、GroovyClassLoader

    GroovyClassLoader 用 Groovy 的 GroovyClassLoader ,动态地加载一个脚本并执行它的行为.GroovyClassLoader是一个定制的类装载器,负责解释加载J ...

  7. java设计模式-----5、原型模式

    原型(Prototype)模式是一种对象创建型模式,他采取复制原型对象的方法来创建对象的实例.使用原型模式创建的实例,具有与原型一样的数据. 原型模式的特点: 1.由原型对象自身创建目标对象.也就是说 ...

  8. JSP总结摘要

    一 概述 1.什么是JSP? Java Server Pages,服务器端负责页面展示的技术,可以嵌套java语言,以取代使用Servlet生成页面的方式,底层被转化为Servlet. 二 路径 1. ...

  9. laravel之引入验证码类

    1.将验证码类文件夹放入到指定的位置,放入位置可以自定义 2.在控制器中引入验证码文件 3.在验证码文件中可以根据自己的需要,对验证码的内容进行编辑(包括背景,画线,边框,内容) 4.在入口文件中开启 ...

  10. js判断pc端和移动端的方法

    function IsPC() { var userAgentInfo = navigator.userAgent; var Agents = ["Android", " ...