Sightseeing trip
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9078   Accepted: 3380   Special Judge

Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

Output

There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20

Sample Output

1 3 5 2

Source

 
题目大意:给定图的N个点M条边,求出图中的最小环(无向图,有重边)。
解题思路:
int maxn=105;
int a[maxn][maxn],f[maxn][maxn];
a:邻接矩阵,存图
利用floyd算法;
f:记录任意两点间的最短距离,初值为a.
f(k)[i][j]表示从顶点i到顶点j,中间顶点序号不大于k的最短路径长度。
f(k)[i][j]=min(f(k-1)[i][j],f(k-1)[i][k]+f(k-1)[k][j])   
 
则最小环可以表示为a[i][k]+a[k][j]+f(k-1)[i][j]
即表示从顶点i到顶点j,中间顶点序号不大于k-1的最短路径长度+i到k的边长+k到j的边长。(这样保证构成环,而没有重边)
#include<iostream>
#include<cstring>
using namespace std;
int n,m,ans=0x3f3f3f3f,s,t,temk=0x3f3f3f3f,cnt;
const int maxn=;
int a[maxn][maxn],d[maxn][maxn],f[maxn][maxn],path[maxn];
void dfs(int i,int j){
if(f[i][j]==){path[++cnt]=j;return;}
dfs(f[i][j],j);
}
void floy(){
memset(path,,sizeof(path));
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
d[i][j]=a[i][j];
for(int k=;k<=n;k++){
for(int i=;i<k;i++)
for(int j=i+;j<k;j++)
if((long long)a[i][k]+a[k][j]+d[i][j]<ans){//注意数据类型,3个连加,容易超Int
ans=a[i][k]+a[k][j]+d[i][j];
s=i;t=j;
temk=k;
cnt=;
path[++cnt]=s;
dfs(s,t);//记录从s到t的中间节点,包含t,不含s.
path[++cnt]=k; } for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(d[i][j]>d[i][k]+d[k][j]){
d[i][j]=d[i][k]+d[k][j];
f[i][j]=k;
}
}
return ;
}
int main(){
memset(a,0x3f,sizeof(a));
memset(f,,sizeof(f));
cin>>n>>m;
for(int i=;i<=n;i++) a[i][i]=;
for(int i=;i<=m;i++){
int x,y,w;
cin>>x>>y>>w;
if(w<a[x][y]){
a[x][y]=a[y][x]=w;
}
}
floy();
if(temk==0x3f3f3f3f)cout<<"No solution."<<endl;
else {for(int i=;i<=cnt;i++) cout<<path[i]<<' ';cout<<endl;}
return ;
}
 
 
 
 
 

poj1734的更多相关文章

  1. 「POJ1734」Sightseeing trip

    「POJ1734」Sightseeing trip 传送门 这题就是要我们求一个最小环并且按顺序输出一组解. 考虑 \(O(n^3)\) 地用 \(\text{Floyd}\) 求最小环: 考虑 \( ...

  2. POJ1734 - Sightseeing trip

    DescriptionThere is a travel agency in Adelton town on Zanzibar island. It has decided to offer its ...

  3. POJ1734/Floyd求最小环

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6647   Accepted: 2538 ...

  4. 【POJ1734】Sightseeing Trip 无向图最小环

    题目大意:给定一个 N 个顶点的无向图,边有边权,如果存在,求出该无向图的最小环,即:边权和最小的环,并输出路径. 题解:由于无向图,且节点数较少,考虑 Floyd 算法,在最外层刚开始遍历到第 K ...

  5. poj1734 Sightseeing trip【最小环】

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:8588   Accepted:3224   ...

  6. POJ1734无向图求最小环

    题目:http://poj.org/problem?id=1734 方法有点像floyd.若与k直接相连的 i 和 j 在不经过k的情况下已经连通,则有环. 注意区分直接连接和间接连接. * 路径记录 ...

  7. 【poj1734】Sightseeing trip

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8520   Accepted: 3200 ...

  8. 算法复习——floyd求最小环(poj1734)

    题目: 题目描述 N 个景区,任意两个景区之间有一条或多条双向的路来连接,现在 Mr.Zeng 想找一条旅游路线,这个路线从A点出发并且最后回到 A 点,假设经过的路线为 V1,V2,....VK,V ...

  9. 最小环 hdu1599 poj1734

    最小环用floyd改编. hdu1599特殊一些.要求至少有三个不同的点,并且除了起点与终点重合外,中间不能有环.有点很奇怪,最大值不能为0x3f3f3f3f. poj1374就没那么讲究. //hd ...

  10. Poj1734题解

    题目大意 求一个无向图的最小环 题解 假设是有向图的话.仅仅须要令f[i][i]=+∞,再floyd就可以: 对无向图.应该在floyd算法循环至k的一開始进行例如以下操作: 枚举i和j,假设点i存在 ...

随机推荐

  1. cocos发布遇到的问题

    学习第二天,用官方的demo进行打包,出现以下问题: 第一个问题: 报错信息:scene 没有保存,请先保存相关信息再进行构建. 解决方案:ctrl+s保存即可,一开始没注意前面的英文是场景的意思 第 ...

  2. openpyxl 设置单元格颜色

    在处理excel数据格式的时候,需要对特定单元格进行颜色标注,方便相关人员查看 醒目 # -*- coding: utf-8 -*- from openpyxl import load_workboo ...

  3. python3 基础二——基本的数据类型二

    一.数字(Number) 1.Python支持三种不同的数值类型:整型(int),浮点型(float),复数(complex) 2.Python数字数据类型用于存储数值 3.数据类型是不允许改变的,这 ...

  4. Python3+Appium学习笔记08-元素定位

    appium整合了不同的自动化测试驱动程序.而新版本appium desktop 中安卓是使用UI Automator2来作为驱动程序的.以前版本是使用UI Automator1或 Selendroi ...

  5. Oracle自动化安装脚本-part02-亲试ok

     此为网络配置文件  network.conf [PUBLIC-IP] IP-LIST:192.168.7.198,192.168.8.221 HOSTNAME-LIST:mysql-198,RAC2 ...

  6. C指针的运算

    指针的运算在数组中才有意义 int *p; p++,一定是在一片连续的区域才有意义,当然越界也会带来诸多问题. void main() { ; int *p = &num;//这根本无界可言 ...

  7. 一个简单易上手的短信服务Spring Boot Starter

    前言 短信服务在用户注册.登录.找回密码等相关操作中,可以让用户使用更加便捷,越来越多的公司都采用短信验证的方式让用户进行操作,从而提高用户的实用性. Spring Boot Starter 由于 S ...

  8. Vivado RAM使用

    RAM使用的几点说明: 1,RAM的读写位宽可以不同,举例:写的位宽为8(1Byte),读的位宽为1(1bit),那么读的地址就变成了写地址的8倍,即位宽增加3bit.

  9. learning express step(七)

    Route handlers enable you to define multiple routes for a path. The example below defines two routes ...

  10. js中对象的输出顺序

    前言:最近用for-in时,看到说for-in不能保证遍历的对象顺序,对此有些疑问,于是便研究了下,本文做简要说明. 现象 let obj = { a: 'a', b: 'b', 1: 1, 2: 2 ...