title: 【概率论】5-2:伯努利和二项分布(The Bernoulli and Binomial Distributions)

categories:

- Mathematic

- Probability

keywords:

- Bernoulli Distributions

- Binomial Distributions

toc: true

date: 2018-03-27 21:15:22



Abstract: 本文介绍Bernoulli Distribution (伯努利分布)和Binomial Distribution(二项分布)

Keywords: Bernoulli Distributions,Binomial Distributions

开篇废话

吐血更,一天三篇,虽然上一篇只能算一段,但是确实应该加快总结的步伐了,给后面的新内容腾出足够的时间

一杯敬自由,一杯敬死亡

在本章的开始,我们从离散分布下手,看看每个分布有这什么样的特点,然后用我们的工具分析研究其内在的性质,当然要从最简单的开始,逐步构建出我们要研究的有代表性的这些分布,第一个被处理的就是伯努利分布(bernoulli Distribution)

随机变量 XXX 只有两个取值,0或者1,并且取1的概率固定是ppp 那么我们就说 XXX 有一个参数为 ppp 的伯努利分布。如果我们只知道试验输出对应的随机变量只有两个结果,非此即彼,那么这个随机变量的分布就是伯努利族中的一个随机变量。

如果随机变量 X1,X2,…,XnX_1,X_2,\dots,X_nX1​,X2​,…,Xn​ 有相同的伯努利分布,他们的和就是其中为1的随机变量的个数,这个个数也是随机的,其对应的分布为二项分布。

The Bernoulli Distributions

上来先来个例子:


临床试验,对于某种治疗,我们简单的把结果划分成两种,一种有效,一种无效,我们用随机变量来表示这两个结果,X=1X=1X=1 表示治疗有效 X=0X=0X=0 表示治疗无效,那么我们要做的是得到这个概率就是 Pr(X=1)=pPr(X=1)=pPr(X=1)=p 的值就是我们关心的结果。ppp 的取值范围在 [0,1][0,1][0,1] 对应于不同的 ppp 我们就有了伯努利分布族。


Definition Bernoulli Distribution.A random variable X has the Bernoulli distribution with parameter ppp ( 0≤p≤10\leq p\leq 10≤p≤1 )if X can take only the values 0 and 1 and the probabilities are

Pr(X=1)=p
Pr(X=1)=p
Pr(X=1)=p

and

Pr(X=0)=1−p
Pr(X=0)=1-p
Pr(X=0)=1−p

其概率函数可以被写成:

f(x∣p)={px(1−p)1−x for x=0,10otherwise
f(x|p)=
\begin{cases}
p^x(1-p)^{1-x}&\text{ for }x=0,1\\
0&\text{otherwise}
\end{cases}
f(x∣p)={px(1−p)1−x0​ for x=0,1otherwise​

p.f.的表示方法可以看出伯努利分布是依赖于参数 ppp 的,所以 ppp 可以看成一个条件,那么我们后面所有类似的分布都可以将其p.f.或者p.d.f.写成这种形式。

c.d.f.(似乎我们学c.d.f的时候已经讲过了)可以被写成:

F(x∣p)={0 for x<01−p for 0<x<11 for x≥1
F(x|p)=
\begin{cases}
0&\text{ for }x<0 \\
1-p&\text{ for }0 < x < 1 \\
1&\text{ for }x\geq 1
\end{cases}
F(x∣p)=⎩⎪⎨⎪⎧​01−p1​ for x<0 for 0<x<1 for x≥1​

Expectation

当我们研究完其p.f.和c.d.f.以后就研究研究他的期望吧,也没啥可研究的了,随机变量 XXX 有参数为 ppp 的伯努利分布,那么其期望:

E(X)=p×1+0×(1−p)=p
E(X)=p\times1 + 0\times(1-p)=p
E(X)=p×1+0×(1−p)=p

然后我们研究一下随机变量 X2X^2X2 的概率分布

E(X2)=p×12+(1−p)×02=p
E(X^2)=p\times1^2 + (1-p)\times0^2=p
E(X2)=p×12+(1−p)×02=p

Variance

期望完了当然是方差了,同样是随机变量 XXX 有参数为 ppp 的伯努利分布,那么其方差:

Var(X)=E[(X−E(X))2]=(1−p)2p+(−p)2(1−p)=p(1−p)(1−p+p)=p(1−p)
Var(X)=E[(X-E(X))^2]=(1-p)^2p+(-p)^2(1-p)=p(1-p)(1-p+p)=p(1-p)
Var(X)=E[(X−E(X))2]=(1−p)2p+(−p)2(1−p)=p(1−p)(1−p+p)=p(1−p)

或者通过更简单的公式:

Var(X)=E[X2]−E2[X]=p−p2=p(1−p)
Var(X)=E[X^2]-E^2[X]=p-p^2=p(1-p)
Var(X)=E[X2]−E2[X]=p−p2=p(1−p)

结果一致。

m.g.f.

我们说过除了p.d.f./p.f.和c.d.f.,m.g.f.也是非常重要的分布标书工具,所以伯努利分布自然也有m.g.f.

ψ(t)=E[etX]=p(et×1)+(1−p)(et×0) for −∞&lt;t&lt;∞
\begin {aligned}
\psi(t)=E[e^{tX}]=p(e^{t\times 1})+(1-p)(e^{t\times 0}) &amp;\text{ for } -\infty&lt;t&lt;\infty
\end {aligned}
ψ(t)=E[etX]=p(et×1)+(1−p)(et×0)​ for −∞<t<∞​

这个写起来应该没啥难度,注意好 XXX 就行,然后就是期望对应的概率值。

Bernoulli Trials/Process

说到序列我就想起了数学分析,Tao的分析我们已经开始更新了,但是我想把概率基础部分先写完,然后一边研究数理统计一边写分析的博客,想到分析的原因是我看到了序列

如果一个序列不论是否有限,每一个元素都是独立同分布的(i.i.d.)的伯努利随机变量,那么我们就叫他们伯努利序列或者伯努利过程。

Definition Bernoulli Trails/Process.If the random variables in a finite or infinite sequence X1,X2,…X_1,X_2,\dotsX1​,X2​,… and i.i.d.,and if each random variable XiX_iXi​ has the Bernoulli distribution with parameter p,then it is said that X1,X2,…X_1,X_2,\dotsX1​,X2​,… are Bernoulli trials with parameter ppp .An infinite sequence of Bernoulli trials is also called a Bernoulli Process.

伯努利过程的例子最简单的就是连续丢同一枚硬币,组成的结果正反,就组成了伯努利过程。

The Binomial Distributions

举个例子,这个例子和上面伯努利过程有关,连续生产一批零件,每个零件有一定的合格率,,所有零件组成的序列是一个伯努利过程,那么么我们想知道这些随机变量的和满足怎么样的分布。

Definition Binomial Distribution.A random variable XXX has the binomial distribution with parameters nnn and ppp if XXX has a discrete distribution for which the p.f. is as follow:

f(x∣n,p)={(nx)px(1−p)n−x for x=0,1,…0otherwise
f(x|n,p)=
\begin{cases}
\begin{pmatrix}n\\x\end{pmatrix} p^x(1-p)^{n-x }&amp;\text{ for }x=0,1,\dots\\
0&amp;\text{otherwise}
\end{cases}
f(x∣n,p)=⎩⎨⎧​(nx​)px(1−p)n−x0​ for x=0,1,…otherwise​

in this distribution ,nnn must be a positive integer, and ppp must lie in the interval 0≤p≤10\leq p\leq 10≤p≤1

本文节选自地址:https://www.face2ai.com/Math-Probability-5-2-the-Bernoulli-and-Binomial-Distributions转载请标明出处

【概率论】5-2:伯努利和二项分布(The Bernoulli and Binomial Distributions)的更多相关文章

  1. 概率图模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-多项式贝叶斯

    之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上 ...

  2. 概率图形模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-贝叶斯多项式

    之前忘记强调重要的差异:链式法则的条件概率和贝叶斯网络的链式法则之间的差异 条件概率链式法则 P\left({D,I,G,S,L} \right) = P\left( D \right)P\left( ...

  3. 估计量|估计值|矩估计|最大似然估计|无偏性|无偏化|有效性|置信区间|枢轴量|似然函数|伯努利大数定理|t分布|单侧置信区间|抽样函数|

    第二章 置信区间估计 估计量和估计值的写法? 估计值希腊字母上边有一个hat 点估计中矩估计的原理? 用样本矩来估计总体矩,用样本矩的连续函数来估计总体矩的连续函数,这种估计法称为矩估计法.Eg:如果 ...

  4. 【sklearn朴素贝叶斯算法】高斯分布/多项式/伯努利贝叶斯算法以及代码实例

    朴素贝叶斯 朴素贝叶斯方法是一组基于贝叶斯定理的监督学习算法,其"朴素"假设是:给定类别变量的每一对特征之间条件独立.贝叶斯定理描述了如下关系: 给定类别变量\(y\)以及属性值向 ...

  5. 吴裕雄 python 机器学习——伯努利贝叶斯BernoulliNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  6. 贝努利概率 matlab

    参考:http://zhidao.baidu.com/link?url=3XZm35XpFf_kbADwDHEERtgFMKqHftiS5SyTCWcBtlF7B7zeNgoNqIzXxpJsHtBI ...

  7. Other-Website-Contents.md

    title: 本站目录 categories: Other sticky: 10 toc: true keywords: 机器学习基础 深度学习基础 人工智能数学知识 机器学习入门 date: 999 ...

  8. (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem

    2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...

  9. 灰度图像--图像分割 阈值处理之OTSU阈值

    学习DIP第55天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:http ...

随机推荐

  1. PB在已经存在的datawindow中添加数据列的方法

    打开数据窗口,点击Data按钮 进入到数据源定义画板,选择要新增的列后,不要保存文件,直接点关闭,在提示框选是就可以了 新增的列值存不到数据库中,如果需要更新数据库中的值则:需要在数据窗口画板下,点击 ...

  2. 偷窥篇:重要的C#语言特性——30分钟LINQ教程

    本文转自:http://www.cnblogs.com/liulun/archive/2013/02/26/2909985.html 千万别被这个页面的滚动条吓到!!! 我相信你一定能在30分钟之内看 ...

  3. 关于Windows下的访问控制模型

    在探索Windows操作系统的过程中,发现很多有意思 的东西. Windows下的访问控制模型也是我在Github上浏览代码时,无意中发现的. 项目地址 https://github.com/Krut ...

  4. VS.NET(C#)--1.4项目与解决方案

    项目与解决方案 项目 除创建网站,VS2005可创建项目.然后把项目放入解决方案中.VS2005可编译很多类型项目,分别是: 1.Windows应用程序 --在用戶计算机上运行的客户端应用程序,可显示 ...

  5. jquery input file 多图上传,单张删除,查看

    <div class="form-group"> <label for="imgs" class="col-md-3 col-sm- ...

  6. ABAP Netweaver体内的那些寄生式编程语言

    今天这篇文章的主题是:寄生. Jerry最近看到朋友圈里一位朋友分享的一张寄居蟹的照片,对于Jerry这种在内地长大的又很宅的人来说,没有机会看到寄居蟹,所以觉得很新鲜: 寄居蟹主要以螺壳为寄体,寄居 ...

  7. java,单文件和多文件上传代码范例

    上传一个单文件,用request.getFile得到文件(下面的功能是上传到阿里云) @RequestMapping(value = {"/content"}, method = ...

  8. 解决 React Native:The development server returned response error code: 404

    解决方法: 打开android/app/build.gradle compile 'com.facebook.react:react-native:+' 修改为: compile ("com ...

  9. 说说你对kubernetes的理解(简单)

    目录 整体概述 pod工作流程 k8s网络 flannel 网络策略,network proxy 几套证书理解 组件 master管理节点上组件 node节点 整体概述 k8s是一个编排工具,是谷歌的 ...

  10. Springboot整合cxf后不能访问controller,不能访问接口

    参考版本 springboot 1.4.X <=========> cxf-spring-boot-starter-jaxws 3.1.X springboot 1.5.X <=== ...