重建道路 树形DP

给一棵树,问最少断多少边使得这棵树树最终只有\(p​\)个节点

设计dp状态\(f[u][i][j]\)表示节点\(u\),到第\(i\)个儿子,使\(j\)个节点分离,但是不分离\(u\)最少需要断的边数。类比背包,容易得到转移方程:

\[f[u][i][j]=min{f[u][i-1][j-k]+f[v][n][k]}
\]

再优化一维\(i\),状态变为\(f[u][j]\),此时必须倒序遍历\(j\)。

需要注意的是,最后答案并不是\(f[1][sz[1]-p]\),因为最后可能把节点1也删了,所以必须在每个满足子树节点数\(\ge p\)的节点处统计一下答案。

\[ans=min(f[u][sz[u]-p]+f[u][sz[u]], ans)
\]

其中注意\(f[1][sz[1]]=0\),因为不需要将树根与其父亲分离(它没父亲)

#include <cstdio>
#include <cstring>
#define MAXN 155
#define MIN(A,B) ((A)<(B)?(A):(B))
using namespace std;
int n,p,ans;
int head[MAXN],nxt[MAXN*2],vv[MAXN*2],tot;
inline void add_edge(int u, int v){
vv[++tot]=v;
nxt[tot]=head[u];
head[u]=tot;
}
int f[MAXN][MAXN],sz[MAXN];
void load(int u, int fa){
sz[u]=1;
f[u][0]=0;
for(int i=head[u];i;i=nxt[i]){
int v=vv[i];
if(v==fa) continue;
load(v, u);
sz[u]+=sz[v];
}
f[u][sz[u]]=1;
}
void dfs(int u, int fa){
for(int i=head[u];i;i=nxt[i]){
int v=vv[i];
if(v==fa) continue;
dfs(v, u);
for(int j=sz[u];j>=0;--j)
for(int k=0;k<=MIN(sz[v], j);++k){
f[u][j]=MIN(f[v][k]+f[u][j-k], f[u][j]);
}
}
if(sz[u]>=p) ans=MIN(f[u][sz[u]-p]+f[u][sz[u]], ans);
}
int main(){
scanf("%d %d", &n, &p);
for(int i=2;i<=n;++i){
int u,v;
scanf("%d %d", &u, &v);
add_edge(u, v);
add_edge(v, u);
}
memset(f, 0x3f, sizeof(f));
ans=0x3f3f3f3f;
load(1, 0);
f[1][sz[1]]=0;
dfs(1, 0);
printf("%d", ans);
return 0;
}
/*
f[u][i][j]=min{f[u][i-1][j-k]+f[v][n][k]}
*/

重建道路 树形DP的更多相关文章

  1. P1272 重建道路(树形dp)

    P1272 重建道路 题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟 ...

  2. 洛谷 P1272 重建道路(树形DP)

    P1272 重建道路 题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟 ...

  3. Luogu P1272 重建道路 树形DP

    刚才瞅了半天自己当初写的,终于瞅出来了...QWQ 设f[i][j]表示以i为根的子树,包含j个节点所需砍掉的最小边数 那么可知f[u][1]=u的度: 方程:f[u][j]=min(f[u][j], ...

  4. bzoj2500幸福的道路 树形dp+单调队列

    2500: 幸福的道路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 434  Solved: 170[Submit][Status][Discuss ...

  5. 【bzoj2500】幸福的道路 树形dp+倍增RMQ+二分

    原文地址:http://www.cnblogs.com/GXZlegend/p/6825389.html 题目描述 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一 ...

  6. (noip模拟二十一)【BZOJ2500】幸福的道路-树形DP+单调队列

    Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...

  7. [LUOGU1272] 重建道路 - 树形背包

    题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟一的.因此,牧场运输系 ...

  8. [BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案

    考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情.. 先用dfs处理出来每个节点以他为根的子树的最长链和次长链.(后面会用到) 然后用类似dp ...

  9. [HNOI2018]道路 --- 树形DP

    [HNOI2018]道路 题目描述: W 国的交通呈一棵树的形状.W 国一共有 \(n-1\) 个城市和 \(n\) 个乡村, 其中城市从 \(1\) 到 \(n-1\) 编号,乡村从 \(1\) 到 ...

随机推荐

  1. TZOJ5201: 数字游戏

    #include<stdio.h> int main() { ,j=; scanf("%I64d %I64d %I64d",&n,&k,&t); ...

  2. HTML5从入门到精通(千锋教育)免费电子版+PDF下载

    本书是HTML5初学者极好的入门教材之一,内容通俗易懂.由浅入深.循序渐进.本书内容覆盖全面.讲解详细,其中包括标签语义化.标签使用规范.选择器类型.盒模型.标签分类.样式重置.CSS优化.Photo ...

  3. 解决git下载很慢的问题

    通过官网在下载git的时候发现网速只有几十K,淘宝有一个镜像的网站 可以提供下载https://npm.taobao.org/mirrors/git-for-windows/

  4. Vue自定义指令和自定义过滤器

    一.自定义指令: 自定义指令分为两种:全局自定义指令和局部自定义指令 全局指令指所有组件都可以使用,局部指令是只有在当前组件中才可以使用. 如,我们现在有个需求,当一个输入框获取焦点时,显示出一个di ...

  5. unbantu...

    待更新装个中文输入法装半天,还不好用,难受 注销到一个语句 sudo systemctl restart lightdm

  6. hoj 棋盘问题 状压入个门

    大概题意是:有一个n*m的棋盘,在这个棋盘里边放k个旗子,要求每一行每一列都不能存在一对旗子相邻,问最后总共的方案数. 我们先来考虑个简单的,假如说只有一行,要求在这一行里边填充k个旗子,要求任意两个 ...

  7. 雷达无线电系列(三)经典CFAR算法门限因子alpha计算(matlab)

    前言 本文汇集CA.SO.GO.OS.杂波图等恒虚警算法的门限因子求解方法及其函数 1,CA-CFAR [非常简单,可以直接求解] %% 均值恒虚警_门限因子计算公式 %% 版本:v1 %% 时间:2 ...

  8. 一、hystrix如何集成在openfeign中使用

    所有文章 https://www.cnblogs.com/lay2017/p/11908715.html 正文 HystrixInvocationHandler hystrix是开源的一个熔断组件,s ...

  9. 3.Ubuntu/Deepin下安装Monaco/Menlo字体

    前段时间在一家公司实习,让IT给电脑安装了Ubuntu系统,用着挺好,但总感觉字体不太好看,网上小伙伴说Monaco字体不错,所以计划安装试试. 看了好多教程,不得不说,一些教程走下来真心是装不成功, ...

  10. English-培训4-How do you spend your day