Fibonacci数性质

0.\(F_{n-1}+F_{n-2}=F_{n} ,特殊的 F_{0}=1,F_{1}=1\)

上述式子为定义式

1.\(F_{0}+F_{1}+...+F_{n}=F_{n+2}-1\)

证明:

\(F_0+F_1=F_2\)

\(F_1+F_2=F_3\)

\(F_2+F_3=F_4\)

\(\vdots\)

\(F_{n}+F_{n+1}=F_{n+2}\)

\(F_{0}+2F_{1}+2F_{2}+...+2F_{n}+F_{n+1}=F_1+F_2+...+F_{n+2}\)

\(F_0+F_1+F_2+...+F_{n}+F_{n+1}=F_{n+2}-F_{1}=F_{n+2}-1\)

2.\(F_{1}+F_{3}+...+F_{2n-1}=F_{2n}\)

证明

\(F_{1}=F_{0}+1\)

\(F_{3}=F_{2}+F_{1}\)

\(\vdots\)

\(F_{2n-1}=F_{2n-2}+F_{2n-3}\)

\(F_{1}+F_{3}+...+F_{2n-1}=1+F_{0}+F_{1}+F_{2}+...+F_{2n-3}+F_{2n-2}=1+F_{2n}-1=F_{2n}\)

3.\(F_0+F_2+...+F_{2n}=F_{2n+1}-1\)

证明:

有 \(F_0+F_1+...+F_n=F_{n+2}-1\) 和 \(F_1+F_3+...+F_{2n-1}=F_{2n}\)

$F_0+F_2...+F_{2n}=F_{2n+2}-F_{2n}-1=F_{2n+1}-1 $

4.\(F_0^2+F_1^2+F_2^2+...F_{n-1}^2+F_n^2=F_n F_{n+1}\)

证明

有 \(F_0^2=F_0*F_1\) ,假设有 \(F_{0}^2+F_1^2+F_2^2+...+F_{n-1}^2=F_{n-1} F_{n}\)

那么 \(F_0^2+F_1^2+...+F^2_{n-1}+F^2_{n}=F_{n-1}F_{n}+F_{n}^2=F_{n}F_{n+1}\)

5.\(F_{n+2}+F_{n-2}=3\times F_{n}\)

证明

\(F_{n+2}=F_{n+1}+F_{n}=(F_{n}+F_{n-1})+F_{n}=(F_{n}+(F_{n}-F_{n-2}))+F_{n}=3\times F_{n}-F_{n-2}\)

6.\(gcd(F_{n+1},F_{n})=1\)

证明:
根据辗转相减法则
$ gcd(F_{n+1},F_{n}) =gcd(F_{n+1}-F_{n},F_{n}) =gcd(F_{n},F_{n-1}) =gcd(F_{2},F_{1}) =1$

7.\(F_{m+n}=F_{m-1}F_{n}+F_{m}F_{n+1}\)

把\(F_n\)看做斐波那契的第1项,那么到第\(F_{n+m}\)项时,系数为\(F_{m-1}\)

把\(F_{n+1}\)看做斐波那契的第2项,那么到第\(F_{n+m}\)项时,系数为\(F_{m}\)

8.\(gcd(F_{n+m},F_{n})=gcd(F_{n},F_{m})\)

证明:
\(gcd(F_{n+m},F_{n})=gcd(F_{n+1}F_{m}+F_{n}F_{m-1},F_{n})=gcd(F_{n+1}F_{m},F_{n})=gcd(F_{m},F_{n})\)

9.\(gcd(F_{n},F_{m})=F_{gcd(n,m)}\)

由8式得,Fibonacci数满足下标的辗转相减

\(gcd(F_n,F_m)=gcd(F_{gcd(n,m)},F_{gcd(n,m)})=F_{gcd(n,m)}\)

Fibonacci数性质的更多相关文章

  1. 关于java的递归写法,经典的Fibonacci数的问题

    经典的Fibonacci数的问题 主要想展示一下迭代与递归,以及尾递归的三种写法,以及他们各自的时间性能. public class Fibonacci { /*迭代*/ public static ...

  2. java 练手 Fibonacci数

    Problem B Fibonacci数 时间限制:3000 ms  |  内存限制:65535 KB   描述 无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列 ...

  3. 1143 多少个Fibonacci数

    时间限制:500MS  内存限制:65536K提交次数:270 通过次数:16 题型: 编程题   语言: C++;C Description 给你如下Fibonacci 数的定义: F1 = 1 F ...

  4. Fibonacci数

    Fibonacci数 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列,它可以递 ...

  5. 每日一小练——高速Fibonacci数算法

    上得厅堂,下得厨房,写得代码,翻得围墙,欢迎来到睿不可挡的每日一小练! 题目:高速Fibonacci数算法 内容:先说说Fibonacci数列,它的定义是数列:f1,f2....fn有例如以下规律: ...

  6. 一个小的日常实践——高速Fibonacci数算法

    上得厅堂.下得厨房.写得代码,翻得围墙,欢迎来到睿不可挡的每日一小练! 题目:高速Fibonacci数算法 内容:先说说Fibonacci数列,它的定义是数列:f1,f2....fn有例如以下规律: ...

  7. ACM Fibonacci数 计算

    Fibonacci数 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列,它可以递 ...

  8. 计算fibonacci数(多种方法)

    #include <iostream> using namespace std; //计算fibonacci数 //方法一:二分递归法,时间复杂度为O(2^n),额外空间复杂度为常数 in ...

  9. 利用JavaScript打印出Fibonacci数(不使用全局变量)

    从汤姆大叔的博客里看到了6个基础题目:本篇是第4题 - 利用JavaScript打印出Fibonacci数(不使用全局变量) 解题关键: 1.Fibonacci数列的规律 2.递归 解点1:Fibon ...

随机推荐

  1. tp3.2判断修改成功

    save方法的返回值是影响的记录数,如果返回false则表示更新出错,因此一定要用恒等来判断是否更新失败. 一开始用这种判断, if (!$edit_flag && $edit_fla ...

  2. hadoop--Unable to load native-hadoop library for your platform解决方法

    笔者实验环境:centos 7.4.1708,hadoop-2.6.0-cdh5.14.2. 执行hadoop命令时出现以下告警,不能加载相关库: WARN util.NativeCodeLoader ...

  3. C++ 中不能声明为虚函数的函数有哪些?

    目录 普通函数 构造函数 内联成员函数 静态成员函数 友元函数 普通函数 普通函数(非成员函数)只能被overload,不能被override,而且编译器会在编译时绑定函数. 多态的运行期行为体现在虚 ...

  4. 【Manacher】Colorful String

    The value of a string s is equal to the number of different letters which appear in this string. You ...

  5. k8s-gitlab搭建

    Gitlab官方提供了 Helm 的方式在 Kubernetes 集群中来快速安装,但是在使用的过程中发现 Helm 提供的 Chart 包中有很多其他额外的配置,所以我们这里使用自定义的方式来安装, ...

  6. CMake入门-03-还是HelloWorld

    工作环境 系统:macOS Mojave 10.14.6 CMake: Version 3.15.0-rc4 Hello,World! 扩展-math 目录里的文件编译成静态库再由 main 函数调用 ...

  7. C#工厂模式案例

    class JianDanGongChang { static void Main(string[] args) { Factory factory=new LianXiangFactory(); D ...

  8. winform c# 请求网站,返回Json字符串

    private void callApibjhb() { //输出执行的开始时间 Console.WriteLine(string.Format("Bind {0}", DateT ...

  9. c# 163网易发送邮件

    是4.0的,说以添加包是 代码: public class SendEmailInfo { /// <summary> /// 发送邮件 /// </summary> /// ...

  10. 如何自定义starter

    在springboot启动流程的系列文章中,我们看过了springboot的自动配置机制,本文将基于自动配置机制自定义一个自动配置的starter示例 正文 模块结构 首先,我们准备两个模块servi ...