大意: 初始一个数字$n$, 每次操作随机变为$n$的一个因子, 求$k$次操作后的期望值.

设$n$经过$k$次操作后期望为$f_k(n)$.

就有$f_0(n)=n$, $f_k(n)=\frac{\sum\limits_{d|n}{f_{k-1}(d)}}{\sigma_0(n)}, k>0$.

显然$f_k(n)$为积性函数, $dp$算出每个素因子的贡献即可.

#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 1e4+10;
int dp[N][70], sum[N][70], mi[N]; int DP(int p, int k, int r) {
memset(dp,0,sizeof dp);
memset(sum,0,sizeof sum);
sum[0][0] = dp[0][0] = 1;
REP(i,1,k) sum[0][i]=(sum[0][i-1]+(dp[0][i]=(ll)dp[0][i-1]*p%P))%P;
REP(i,1,r) {
sum[i][0] = dp[i][0] = 1;
REP(j,1,k) sum[i][j]=(sum[i][j-1]+(dp[i][j]=sum[i-1][j]*inv(j+1)%P))%P;
}
return dp[r][k];
} int main() {
int k;
ll n;
scanf("%lld%d", &n, &k);
int mx = sqrt(n+0.5), ans = 1;
REP(i,2,mx) if (n%i==0) {
int x = 0;
while (n%i==0) n/=i, ++x;
ans = (ll)ans*DP(i,x,k)%P;
}
if (n>1) ans = (ll)ans*DP(n%P,1,k)%P;
if (ans<0) ans+=P;
printf("%d\n", ans);
}

Makoto and a Blackboard CodeForces - 1097D (积性函数dp)的更多相关文章

  1. Bash Plays with Functions CodeForces - 757E (积性函数dp)

    大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...

  2. D. Makoto and a Blackboard(积性函数+DP)

    题目链接:http://codeforces.com/contest/1097/problem/D 题目大意:给你n和k,每一次可以选取n的因子代替n,然后问你k次操作之后,每个因子的期望. 具体思路 ...

  3. Codeforces E. Bash Plays with Functions(积性函数DP)

    链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...

  4. Codeforces757E.Bash Plays With Functions(积性函数 DP)

    题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...

  5. Problem : 这个题如果不是签到题 Asm.Def就女装(积性函数dp

    https://oj.neu.edu.cn/problem/1460 思路:若n=(p1^a1)*(p2^a2)...(pn^an),则f(n,0)=a1*a2*...*an,显然f(n,0)是积性函 ...

  6. CF 757E Bash Plays with Functions——积性函数+dp+质因数分解

    题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...

  7. CF1097D Makoto and a Blackboard 积性函数、概率期望、DP

    传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...

  8. codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

    http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...

  9. CF 757 E Bash Plays with Functions —— 积性函数与质因数分解

    题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...

随机推荐

  1. 前端 Jenkins 自动化部署

    这两天折腾了一下 Jenkins 持续集成,由于公司使用自己搭建的 svn 服务器来进行代码管理,因此这里 Jenkins 是针对 svn 服务器来进行的配置,Git 配置基本一致,后面也介绍了下针对 ...

  2. java多线程编程详细总结

    一.多线程的优缺点 多线程的优点: 1)资源利用率更好2)程序设计在某些情况下更简单3)程序响应更快 多线程的代价: 1)设计更复杂虽然有一些多线程应用程序比单线程的应用程序要简单,但其他的一般都更复 ...

  3. git *** Please tell me who you are.错误

    GIT 中提示 please tell me who you are   如果使用git过程中出现了,please tell me who you are ,需要设置一下使用者的身份. 1.git c ...

  4. [eclipse]如何修改Eclipse编辑器的字体

    步骤如下, 菜单->"Window"->“Preference”->“General”->“Appearance”->“Colors & Fo ...

  5. python内存泄露memory leak排查记录

    问题描述 A服务,是一个检测MGR集群主节点是否发生变化的服务,使用python语言实现的. 针对每个集群,主线程会创建一个子线程,并由子线程去检测.子线程会频繁的创建和销毁. 上线以后,由于经常会有 ...

  6. 利用ExpandableListView实现常用号码查询功能的实现

    package com.loaderman.expandablelistviewdemo; import android.content.Context; import android.databas ...

  7. 阶段3 3.SpringMVC·_03.SpringMVC常用注解_7 ModelAttribute注解

    这个注解可以作用在方法上,也可以作用在参数上 演示 user里面有三个属性, 表单只提交了两个属性.缺少了date属性 date没有获取到值因为也没提交这个值. 下面返回的user对象.上面就会拿到 ...

  8. 阶段3 3.SpringMVC·_02.参数绑定及自定义类型转换_3 配置解决中文乱码的过滤器

    输入中文 中文后台接收到 全部乱码 springMvc提供了过滤器 配置过滤器 characterEncodingFilter是首字母小写当做起的名称.当然这里也可以任意起名字.为了对应所以修改类名首 ...

  9. mongod 对指定数据库创建用户

    https://blog.51cto.com/wzlinux/2153062?source=dra 1.先在admin库中创建管理员用户与密码 [root@mbasic ~]# mongo Mongo ...

  10. 通过正则把文本里的链接加上a标签

    把文本里的链接替换成a标签 function addLinks($text) { return preg_replace('/(http[s]?:\/\/[A-Za-z0-9]+\.[A-Za-z0- ...