MySQL查询的优化是个老生常谈的问题,方法更是多种多样,其中最直接的就是创建索引.

这里通过一个简单的demo来实际用一下索引,看看索引在百万级别查询中速率的提升效果如何

所需数据可以从我前面的一篇博客中获取:https://www.cnblogs.com/wangbaojun/p/11154515.html

有一张salaries,

  查看表结构如下: 

mysql> desc salaries;
+-----------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+---------+------+-----+---------+-------+
| emp_no | int(11) | NO | PRI | NULL | |
| salary | int(11) | NO | | NULL | |
| from_date | date | NO | PRI | NULL | |
| to_date | date | NO | | NULL | |
+-----------+---------+------+-----+---------+-------+

  可以看到emp_no,from_date都是PRI(主键索引),这是在这个表中将这两个字段联合起来设置为主键,一张表中还是只能有一个主键

  查看表的创建命令:

  

mysql> show create table salaries;
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table | Create Table |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| salaries | CREATE TABLE `salaries` (
`emp_no` int(11) NOT NULL,
`salary` int(11) NOT NULL,
`from_date` date NOT NULL,
`to_date` date NOT NULL,
PRIMARY KEY (`emp_no`,`from_date`),
CONSTRAINT `salaries_ibfk_1` FOREIGN KEY (`emp_no`) REFERENCES `employees` (`emp_no`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1 |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

  注意我标红的地方,将emp_no`,`from_date设置为组合主键,组合索引遵从左前缀原则,查询emp_no,或者查询(`emp_no`,`from_date`)会走索引,但是查from_date不会走索引,可以看一下用explain命令查看:

mysql> explain select * from salaries where emp_no=227694;
+----+-------------+----------+------+---------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | salaries | ref | PRIMARY | PRIMARY | 4 | const | 18 | NULL | # key为PRIMARY 走了索引
+----+-------------+----------+------+---------------+---------+---------+-------+------+-------+
1 row in set (0.01 sec) mysql> explain select * from salaries where from_date = '1986-06-26';
+----+-------------+----------+------+---------------+------+---------+------+---------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+------+---------+------+---------+-------------+
| 1 | SIMPLE | salaries | ALL | NULL | NULL | NULL | NULL | 2838426 | Using where | key为Null,Extra 使用了where,没走索引
+----+-------------+----------+------+---------------+------+---------+------+---------+-------------+
1 row in set (0.00 sec) mysql> explain select * from salaries where from_date = '1986-06-26' and emp_no=75047;
+----+-------------+----------+-------+---------------+---------+---------+-------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+-------+---------------+---------+---------+-------------+------+-------+
| 1 | SIMPLE | salaries | const | PRIMARY | PRIMARY | 7 | const,const | 1 | NULL | # key为PRIMARY 走了索引
 +----+-------------+----------+-------+---------------+---------+---------+-------------+------+-------+ 
1 row in set (0.00 sec)

  to_date字段没有设置索引,我们来测试一下加索引前后,该字段查询效率会不会有提升:

  未加索引:

  

mysql> select * from salaries where to_date = '1986-06-26';                                                                                                                                          +--------+--------+------------+------------+
| emp_no | salary | from_date | to_date |
+--------+--------+------------+------------+
| 25676 | 40000 | 1985-06-26 | 1986-06-26 |
| 28757 | 40000 | 1985-06-26 | 1986-06-26 |
| 30860 | 64620 | 1985-06-26 | 1986-06-26 |
| 69209 | 40000 | 1985-06-26 | 1986-06-26 |
| 80550 | 45292 | 1985-06-26 | 1986-06-26 |
| 91204 | 47553 | 1985-06-26 | 1986-06-26 |
| 96140 | 52908 | 1985-06-26 | 1986-06-26 |
| 208352 | 42989 | 1985-06-26 | 1986-06-26 |
| 213109 | 90133 | 1985-06-26 | 1986-06-26 |
| 217498 | 80247 | 1985-06-26 | 1986-06-26 |
| 219462 | 83880 | 1985-06-26 | 1986-06-26 |
| 223150 | 40000 | 1985-06-26 | 1986-06-26 |
| 227694 | 73897 | 1985-06-26 | 1986-06-26 |
| 232856 | 73126 | 1985-06-26 | 1986-06-26 |
| 237619 | 56982 | 1985-06-26 | 1986-06-26 |
| 244087 | 40000 | 1985-06-26 | 1986-06-26 |
| 253472 | 72004 | 1985-06-26 | 1986-06-26 |
| 257395 | 40000 | 1985-06-26 | 1986-06-26 |
| 261811 | 40000 | 1985-06-26 | 1986-06-26 |
| 268968 | 40000 | 1985-06-26 | 1986-06-26 |
| 269331 | 40000 | 1985-06-26 | 1986-06-26 |
| 274805 | 40000 | 1985-06-26 | 1986-06-26 |
| 279432 | 74530 | 1985-06-26 | 1986-06-26 |
| 285685 | 83198 | 1985-06-26 | 1986-06-26 |
| 286745 | 44082 | 1985-06-26 | 1986-06-26 |
| 290901 | 49876 | 1985-06-26 | 1986-06-26 |
| 400719 | 79168 | 1985-06-26 | 1986-06-26 |
| 401448 | 49600 | 1985-06-26 | 1986-06-26 |
| 427374 | 40000 | 1985-06-26 | 1986-06-26 |
| 432024 | 40000 | 1985-06-26 | 1986-06-26 |
| 432654 | 40000 | 1985-06-26 | 1986-06-26 |
| 438461 | 44451 | 1985-06-26 | 1986-06-26 |
| 446228 | 42733 | 1985-06-26 | 1986-06-26 |
| 447391 | 62381 | 1985-06-26 | 1986-06-26 |
| 448823 | 40000 | 1985-06-26 | 1986-06-26 |
| 452355 | 40000 | 1985-06-26 | 1986-06-26 |
| 453590 | 61615 | 1985-06-26 | 1986-06-26 |
| 456521 | 40000 | 1985-06-26 | 1986-06-26 |
| 464415 | 48955 | 1985-06-26 | 1986-06-26 |
| 467901 | 52349 | 1985-06-26 | 1986-06-26 |
| 472895 | 40000 | 1985-06-26 | 1986-06-26 |
| 476501 | 40000 | 1985-06-26 | 1986-06-26 |
| 477079 | 40000 | 1985-06-26 | 1986-06-26 |
| 478934 | 55054 | 1985-06-26 | 1986-06-26 |
| 480301 | 44177 | 1985-06-26 | 1986-06-26 |
| 484507 | 40000 | 1985-06-26 | 1986-06-26 |
| 486187 | 40000 | 1985-06-26 | 1986-06-26 |
| 491159 | 46034 | 1985-06-26 | 1986-06-26 |
| 493154 | 40000 | 1985-06-26 | 1986-06-26 |
| 498140 | 81909 | 1985-06-26 | 1986-06-26 |
| 498565 | 72853 | 1985-06-26 | 1986-06-26 |
+--------+--------+------------+------------+
51 rows in set (1.08 sec)

  用explain分析一下:

  

mysql> explain select * from salaries where to_date = '1986-06-26';
+----+-------------+----------+------+---------------+------+---------+------+---------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+------+---------+------+---------+-------------+
| 1 | SIMPLE | salaries | ALL | NULL | NULL | NULL | NULL | 2838426 | Using where | # Extra使用where。key为Null,在2838426条数据中找51条记录用时1.08s
+----+-------------+----------+------+---------------+------+---------+------+---------+-------------+
1 row in set (0.00 sec)

  

  为to_date字段加索引:

mysql> create index to_date on salaries(to_date);
Query OK, 0 rows affected (5.31 sec)
Records: 0 Duplicates: 0 Warnings: 0                                   创建索引会耗时,索然提升了查询速率,但是更新添加动作会效率降低

 现在看一下表结构:

  

mysql> desc salaries;
+-----------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+---------+------+-----+---------+-------+
| emp_no | int(11) | NO | PRI | NULL | |
| salary | int(11) | NO | | NULL | |
| from_date | date | NO | PRI | NULL | |
| to_date | date | NO | MUL | NULL | | MUL表示非唯一索引
+-----------+---------+------+-----+---------+-------+
4 rows in set (0.00 sec) mysql> show create table salaries;
+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table | Create Table |
+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| salaries | CREATE TABLE `salaries` (
`emp_no` int(11) NOT NULL,
`salary` int(11) NOT NULL,
`from_date` date NOT NULL,
`to_date` date NOT NULL,
PRIMARY KEY (`emp_no`,`from_date`),
KEY `to_date` (`to_date`), # 创建了索引key为to_date
CONSTRAINT `salaries_ibfk_1` FOREIGN KEY (`emp_no`) REFERENCES `employees` (`emp_no`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1 |
+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

   再次查询:

   

mysql> select * from salaries where to_date = '1986-06-26';
+--------+--------+------------+------------+
| emp_no | salary | from_date | to_date |
+--------+--------+------------+------------+
| 25676 | 40000 | 1985-06-26 | 1986-06-26 |
| 28757 | 40000 | 1985-06-26 | 1986-06-26 |
| 30860 | 64620 | 1985-06-26 | 1986-06-26 |
| 69209 | 40000 | 1985-06-26 | 1986-06-26 |
| 80550 | 45292 | 1985-06-26 | 1986-06-26 |
| 91204 | 47553 | 1985-06-26 | 1986-06-26 |
| 96140 | 52908 | 1985-06-26 | 1986-06-26 |
| 208352 | 42989 | 1985-06-26 | 1986-06-26 |
| 213109 | 90133 | 1985-06-26 | 1986-06-26 |
| 217498 | 80247 | 1985-06-26 | 1986-06-26 |
| 219462 | 83880 | 1985-06-26 | 1986-06-26 |
| 223150 | 40000 | 1985-06-26 | 1986-06-26 |
| 227694 | 73897 | 1985-06-26 | 1986-06-26 |
| 232856 | 73126 | 1985-06-26 | 1986-06-26 |
| 237619 | 56982 | 1985-06-26 | 1986-06-26 |
| 244087 | 40000 | 1985-06-26 | 1986-06-26 |
| 253472 | 72004 | 1985-06-26 | 1986-06-26 |
| 257395 | 40000 | 1985-06-26 | 1986-06-26 |
| 261811 | 40000 | 1985-06-26 | 1986-06-26 |
| 268968 | 40000 | 1985-06-26 | 1986-06-26 |
| 269331 | 40000 | 1985-06-26 | 1986-06-26 |
| 274805 | 40000 | 1985-06-26 | 1986-06-26 |
| 279432 | 74530 | 1985-06-26 | 1986-06-26 |
| 285685 | 83198 | 1985-06-26 | 1986-06-26 |
| 286745 | 44082 | 1985-06-26 | 1986-06-26 |
| 290901 | 49876 | 1985-06-26 | 1986-06-26 |
| 400719 | 79168 | 1985-06-26 | 1986-06-26 |
| 401448 | 49600 | 1985-06-26 | 1986-06-26 |
| 427374 | 40000 | 1985-06-26 | 1986-06-26 |
| 432024 | 40000 | 1985-06-26 | 1986-06-26 |
| 432654 | 40000 | 1985-06-26 | 1986-06-26 |
| 438461 | 44451 | 1985-06-26 | 1986-06-26 |
| 446228 | 42733 | 1985-06-26 | 1986-06-26 |
| 447391 | 62381 | 1985-06-26 | 1986-06-26 |
| 448823 | 40000 | 1985-06-26 | 1986-06-26 |
| 452355 | 40000 | 1985-06-26 | 1986-06-26 |
| 453590 | 61615 | 1985-06-26 | 1986-06-26 |
| 456521 | 40000 | 1985-06-26 | 1986-06-26 |
| 464415 | 48955 | 1985-06-26 | 1986-06-26 |
| 467901 | 52349 | 1985-06-26 | 1986-06-26 |
| 472895 | 40000 | 1985-06-26 | 1986-06-26 |
| 476501 | 40000 | 1985-06-26 | 1986-06-26 |
| 477079 | 40000 | 1985-06-26 | 1986-06-26 |
| 478934 | 55054 | 1985-06-26 | 1986-06-26 |
| 480301 | 44177 | 1985-06-26 | 1986-06-26 |
| 484507 | 40000 | 1985-06-26 | 1986-06-26 |
| 486187 | 40000 | 1985-06-26 | 1986-06-26 |
| 491159 | 46034 | 1985-06-26 | 1986-06-26 |
| 493154 | 40000 | 1985-06-26 | 1986-06-26 |
| 498140 | 81909 | 1985-06-26 | 1986-06-26 |
| 498565 | 72853 | 1985-06-26 | 1986-06-26 |
+--------+--------+------------+------------+
51 rows in set (0.00 sec) # 创建索引后同样的查询条件从1.08s变为了0.00s,惊讶吧

  explain分析:

  

mysql> explain select * from salaries where to_date = '1986-06-26';
+----+-------------+----------+------+---------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | salaries | ref | to_date | to_date | 3 | const | 51 | NULL | key从Null变味了索引字段to_date,row从两百多万变为了51
+----+-------------+----------+------+---------------+---------+---------+-------+------+-------+
1 row in set (0.00 sec)

  这个demo从数据上直观的体现了索引带来的查询效率提升有多可观,但是索引也是有利必有害,更多索引的底层知识可以参考这位大牛的博客:https://www.cnblogs.com/Aiapple/p/5693239.html

  

在Mysql中使用索引的更多相关文章

  1. MySQL(五) MySQL中的索引详讲

    序言 之前写到MySQL对表的增删改查(查询最为重要)后,就感觉MySQL就差不多学完了,没有想继续学下去的心态了,原因可能是由于别人的影响,觉得对于MySQL来说,知道了一些复杂的查询,就够了,但是 ...

  2. 一、MySQL中的索引 二、MySQL中的函数 三、MySQL数据库的备份和恢复 四、数据库设计和优化(重点)

    一.MySQL中的索引###<1>索引的概念 索引就是一种数据结构(高效获取数据),在mysql中以文件的方式存在.存储建立了索引列的地址或者指向. 文件 :(以某种数据 结构存放) 存放 ...

  3. MySQL中的索引详讲

    一.什么是索引?为什么要建立索引? 索引用于快速找出在某个列中有一特定值的行,不使用索引,MySQL必须从第一条记录开始读完整个表,直到找出相关的行,表越大,查询数据所花费的时间就越多,如果表中查询的 ...

  4. mysql 中添加索引的三种方法

    原文:http://www.andyqian.com/2016/04/06/database/mysqleindex/ 在mysql中有多种索引,有普通索引,全文索引,唯一索引,多列索引,小伙伴们可以 ...

  5. (转)MySQL中的索引详讲

    序言 之前写到MySQL对表的增删改查(查询最为重要)后,就感觉MySQL就差不多学完了,没有想继续学下去的心态了,原因可能是由于别人的影响,觉得对于MySQL来说,知道了一些复杂的查询,就够了,但是 ...

  6. MySQL中是索引

    MySQL中是索引: --.唯一索引: 一行中的内容不能一样, create t2( id int , num int, unique weiyisuiyin (id,num) ) --唯一; --约 ...

  7. 一步一步带你入门MySQL中的索引和锁 (转)

    出处: 一步一步带你入门MySQL中的索引和锁 索引 索引常见的几种类型 索引常见的类型有哈希索引,有序数组索引,二叉树索引,跳表等等.本文主要探讨 MySQL 的默认存储引擎 InnoDB 的索引结 ...

  8. MySQL中的索引优化

    MySQL中的SQL的常见优化策略 MySQL中的索引优化 MySQL中的索引简介 过多的使用索引将会造成滥用.因此索引也会有它的缺点.虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行 ...

  9. MySQL中的索引简介

    MySQL中的SQL的常见优化策略 MySQL中的索引优化 MySQL中的索引简介 一. 索引的优点 为什么要创建索引?这是因为,创建索引可以大大提高系统的查询性能. 第一.通过创建唯一性索引,可以保 ...

  10. java面试一日一题:讲下mysql中的索引

    问题:请讲下mysql中的索引 分析:mysql中有很多索引,要对对这些索引有所掌握,还要弄清楚每种索引的本质? 回答要点: 主要从以下几点去考虑 1.索引的本质是什么 2.mysql的索引分类: 3 ...

随机推荐

  1. Spring框架是一种非侵入式的轻量级框架

    摘自<Spring框架技术> Spring框架是一种非侵入式的轻量级框架 1.非侵入式的技术体现 允许在应用系统中自由选择和组装Spring框架的各个功能模块,并且不强制要求应用系统的类必 ...

  2. nodeslector使用

    问题: node节点挂了一个, 无法切换到另一个node上 解决: .指定了 nodeslector .设置了下面: hostNetwork: true dnsPolicy: ClusterFirst ...

  3. three.js后期之自定义shader通道实现扫光效果

    如果你还不知道如何在three.js中添加后期渲染通道,请先看一下官方的一个最简单的demo : github. 正如demo中所示的那样,我们的扫光效果,也是一个自定义的ShaderPass. 所以 ...

  4. 使用Docker Maven 插件进行镜像的创建以及上传至私服

    1.在进行服务容器化部署的时候,需要将服务以及其运行的环境整个打包做成一个镜像,打包的过程有两种办法,第一种是首选通过maven打成jar包,然后再编写dockerfile,执行docker buil ...

  5. ArrayList类的set()方法

    ArrayList类的set()方法用于更新指定位置的内容,若内容是new出来的,则需要调用该set()方法:否则,不需要调用该set()方法,示例如下 User.java public class ...

  6. Web安全小结之后端

  7. 【重启C++】-- 序

    好久没看C++的东西了,该忘的也忘得差不多了,现在又要开始学,一点一滴的记录起来吧.

  8. T100——接口代码记录,jsonArray和json

    {<section id="cs_t1client.description" >} #應用 a00 樣板自動產生(Version:) #+ Version..: T10 ...

  9. 技能节-AI人脸识别

    我们收到技能节项目的通知是在两周之前,项目要求做个人脸评分系统. 两周时间写一个"人脸评分系统",好像时间比较紧了,还好我们完成了~这个项目是将摄像头捕获到的包含人脸的图像传输到百 ...

  10. 怎样理解HTMLCollection接口

    和 NodeList 类似, HTMLCollection 也是一个 类数组对象, 和NodeList不同的是, 它是各种 元素节点 的集合, 且不具有 forEach() 方法, 因此如果不转为真正 ...