51nod 1020
求 $n$ 个数的排列中逆序数为 $k$ 的排列数
$f[n][k]$ 表示 $n$ 个数的排列中逆序数为 $k$ 的排列数
$f[n][k] = \sum_{i = 0}^{n - 1} f[n - 1][k - i]$
考虑当前 $n - 1$ 的排列中有 $k - i$ 个逆序对
那么对于 $n$ 的排列,把最大数放到倒数第 $i$ 个数前,就会增加 $i$ 个逆序对
同理 $f[n][k - 1] = \sum_{i = 0} ^ {n - 1} f[n - 1][k - 1 - i]$
两式相减
\begin{array}{l}
f[n][k] - f[n][k - 1] \\
= \sum_{i = 0}^{n - 1} f[n - 1][k - i] - \sum_{i = 0} ^ {n - 1} f[n - 1][k - 1 - i] \\
= f[n - 1][k] - f[n - 1][k - n]
\end{array}
then 地推公式为
$f[n][k] = f[n][k - 1] + f[n - 1][k] - f[n - 1][k - n]$
#include <bits/stdc++.h> #define gc getchar() inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} int f[(int)1e3 + ][(int)1e3 + ];
const int Mod = ; void Work() {
int n = (int)1e3;
for(int i = ; i <= n; i ++) f[i][] = ;
for(int i = ; i <= n; i ++) {
for(int j = ; j <= i * (i - ) / && j <= (int)1e3; j ++) {
f[i][j] = (f[i][j] + f[i][j - ] + f[i - ][j]) % Mod;
if(j - i >= ) f[i][j] -= f[i - ][j - i];
f[i][j] = (f[i][j] + Mod) % Mod;
}
}
} int main() {
Work();
int T = read();
for(; T; T --) printf("%d\n", f[read()][read()]);
return ;
}
51nod 1020的更多相关文章
- 51nod 1020 逆序排列
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020 题意: 思路: 一开始用了三重循环... 设f(n,k)表示n个数 ...
- 51nod 1020 逆序排列(dp,递推)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020 题意:是中文题. 题解:很显然要设dp[i][j]表示 ...
- 51nod 1020 逆序排列 递推DP
1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...
- 51nod 1020 逆序排列 DP
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...
- 51nod 1020 逆序排列——dp
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...
- 51nod水题记
妈呀51nod已经刷不动了又开始跟bzoj一样总是得看题解了...那么发一下总结吧... 1051:最大子矩阵 #include<cstdio> #include<cstring&g ...
- 【51Nod 1244】莫比乌斯函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...
- 51Nod 1268 和为K的组合
51Nod 1268 和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...
- 51Nod 1428 活动安排问题
51Nod 1428 活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...
随机推荐
- spring cloud微服务实践五
本篇我们来看看怎么实现spring cloud的配置中心. 在分布式系统中,特别是微服务架构下,可能会存在许多的服务,每个服务都会存在一个或多个的配置文件.那怎么多的配置文件的管理就会成为一个大问题. ...
- Java中编码问题
在开发过程中经常会遇到一会乱码问题,不是什么大问题,但是也挺烦人的,今天来将我们开发总结的经验记录下来,希望可以给大家一些帮助. 一些概念: 字符:人们使用的记号,抽象意义上的一个符号.比如:‘1’, ...
- adb链接时报错误10061解决方法
首先打开开发者选项然后依次操作: 1. 将安卓设备usb连接到电脑 2. 设备链接到wifi 3. Ping设备ip,检查是否可通信 4. 在cmd依次输入以下命令: 5. adb usb 6. ad ...
- 怎样理解window.name
window.name表示当前窗口的名字, 而非网页的名字, 网页的名字需要使用: document.title; window.name一般是空的字符串, 他的作用其实是配合配合超链接和表单的tar ...
- (一)Activiti简介
一.概念 Activiti项目是一项新的基于Apache许可的开源BPM平台,从基础开始构建,旨在提供支持新的BPMN 2.0标准,包括支持对象管理组(OMG),面对新技术的机遇,诸如互操作性和云架构 ...
- (一)Spring框架基础
一.什么是spring框架 spring是J2EE应用程序框架,是轻量级的IoC和AOP的容器框架,主要是针对javaBean的生命周期进行管理的轻量级容器,可以单独使用,也可以和Struts框架,i ...
- .net core partial view的一些心得
原文:.net core partial view的一些心得 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog. ...
- ASP.NET Core 中的脚本标记帮助程序
官网地址:https://docs.microsoft.com/zh-cn/aspnet/core/mvc/views/tag-helpers/built-in/script-tag-helper?v ...
- Redis 测试 数据类型
- spring.factories配置文件的工厂模式
在springboot的各个依赖包下,我们经常看到META-INF/spring.factories这个文件.spring.factories文件的内容基本上都是这样的格式: # Initialize ...