题意

\(n(1 \le n \le 2000)\)个数每个数是\(0\)或\(1\),现在可以花费\(c_{i, j}\)知道\([i, j]\)的奇偶性,问将所有数都找出来的最小花费。

分析

如果知道了所有的前缀和,那么我们就知道了所有数。

对于区间\([i, j]\),那么如果知道了\(sum[i-1]\),那么就知道了\(sum[j]\),连边。反之亦然。

最终其实我们就是将前缀和\(0\)到\(n\)都放到一个集合里,由于知道了前缀和\(0\)=0,所以就知道了所有数。

题解

所以问题转化为找出一种方案使得所有前缀和在同一集合内的最小解。

最小生成树= =。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2005;
int n, s[N], p[N], tot;
struct E {
int x, y, w;
}e[N*N/2];
inline bool cmp(const E &a, const E &b) {
return a.w<b.w;
}
inline int find(const int x) {
return x==p[x]?x:p[x]=find(p[x]);
}
inline int getint() {
int x=0;
char c=getchar();
for(; c<'0'||c>'9'; c=getchar());
for(; c>='0'&&c<='9'; c=getchar()) {
x=x*10+c-'0';
}
return x;
}
int main() {
scanf("%d", &n);
for(int i=1; i<=n; ++i) {
for(int j=i; j<=n; ++j) {
e[tot++]=(E){i-1, j, getint()};
}
p[i]=i;
}
ll ans=0;
sort(e, e+tot, cmp);
for(int i=0; i<tot; ++i) {
int fx=find(e[i].x), fy=find(e[i].y);
if(fx!=fy) {
if(s[fx]>s[fy]) {
swap(fx, fy);
}
ans+=e[i].w;
p[fx]=fy;
s[fy]+=s[fx]==s[fy]?1:0;
}
}
printf("%lld\n", ans);
return 0;
}

【BZOJ】3714: [PA2014]Kuglarz的更多相关文章

  1. 【BZOJ】3712: [PA2014]Fiolki

    http://www.lydsy.com/JudgeOnline/problem.php?id=3712 题意:n个瓶子,第i个瓶子里又g[i]克物质.m次操作,第i次操作把第a[i]个瓶子的东西全部 ...

  2. 【BZOJ】3709: [PA2014]Bohater(贪心)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3709 很水的题...但是由于脑洞小..漏想了一种情况.. 首先显然能补血的先杀.. 然后杀完后从补血 ...

  3. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  4. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  5. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  6. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  7. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  8. 【BZOJ】【3083】遥远的国度

    树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...

  9. 【BZOJ】【2434】【NOI2011】阿狸的打字机

    AC自动机+DFS序+BIT 好题啊……orz PoPoQQQ 大爷 一道相似的题目:[BZOJ][3172][TJOI2013]单词 那道题也是在fail树上数有多少个点,只不过这题是在x的fail ...

随机推荐

  1. 去掉IE11的叉叉

    在 IE11 下,浏览器自作多情在 text input 组件上加一个 close 叉叉: 用CSS伪类定义: input::-ms-clear { display: none; }

  2. Sybase 出错解决步骤

    总结: 1.出错该错误可以先检查一下Sybase BCKServer服务有没有启动 2.在dsedit看能否ping通备份服务 3.检查master库sysservers表的配置 4.如在备份数据库d ...

  3. 深入理解javascript原型和闭包(10)——this

    接着上一节讲的话,应该轮到“执行上下文栈”了,但是这里不得不插入一节,把this说一下.因为this很重要,js的面试题如果不出几个与this有关的,那出题者都不合格. 其实,this的取值,分四种情 ...

  4. [Head First设计模式]抢票中的设计模式——代理模式

    系列文章 [Head First设计模式]山西面馆中的设计模式——装饰者模式 [Head First设计模式]山西面馆中的设计模式——观察者模式 [Head First设计模式]山西面馆中的设计模式— ...

  5. rqnoj378 约会计划

    题目描述 cc是个超级帅哥,口才又好,rp极高(这句话似乎降rp),又非常的幽默,所以很多mm都跟他关系不错.然而,最关键的是,cc能够很好的调解各各妹妹间的关系.mm之间的关系及其复杂,cc必须严格 ...

  6. Java开发规范摘录

    对于规范的 JAVA 派生类,尽量用 eclipse工具来生成文件格式,避免用手写的头文件/实现文件. 尽量避免一行的长度超过 200 个字符,因为很多终端和工具不能很好处理之.缩进8格 ,impor ...

  7. PHP正则表达式详解(一)

    前言: 半年前我对正则表达式产生了兴趣,在网上查找过不少资料,看过不少的教程,最后在使用一个正则表达式工具RegexBuddy时,发现他的教程写的非常好,可以说是我目前见过最好的正则表达式教程.于是一 ...

  8. 欢迎加入threejs

    Threejs is the coolest graphics rendering engine I have ever seen, so what is threejs, Now, we have ...

  9. python之路二

    .pyc是个什么鬼? 1. Python是一门解释型语言? 我初学Python时,听到的关于Python的第一句话就是,Python是一门解释性语言,我就这样一直相信下去,直到发现了*.pyc文件的存 ...

  10. Python之反射,正则

    本节主要内容: 一. 反射: getattr hasattr setattr defattr 二. 补充模块中特殊的变量 三. 正则表达式 re模块 (一)反射: hasattr(object, na ...