题面

传送门

思路

首先,我们发现这个式子中大部分的项都和$j$有关(尤其是后面的$2^j\ast j!$),所以我们更换一下枚举方式,把这道题的枚举方式变成先$j$再$i$

$f(n)=\sum_{j=0}n2j\ast j!\sum_{i=0}nS_ij$

第二类斯特林数有一个基于组合意义的公式:

$S_ij=\frac1{j!}\sum_{k=0}j(-1)kC_jk(j-k)i=\sum_{k=0}j\frac{(-1)k(j-k)i}{k!(j-k)!}$

把这个公式代回原式中,得到:

$f(n)=\sum_{j=0}n2j\ast j!\sum_{i=0}n\sum_{k=0}j\frac{(-1)k(j-k)i}{k!(j-k)!}$

再次更换一下枚举方式,变成:

$f(n)=\sum_{j=0}n2j\ast j!\sum_{k=0}j\frac{(-1)k}{k!}\sum_{i=0}n\frac{(j-k)i}{(j-k)!}$

$f(n)=\sum_{j=0}n2j\ast j!\sum_{k=0}j\frac{(-1)k}{k!}\ast\frac{\sum_{i=0}n(j-k)i}{(j-k)!}$

此时,设两个函数$a$和$b$,令:

$a(i)=\frac{(-1)^i}{i!}$

$b(i)=\frac{\sum_{j=0}nij}{i!}=\frac{i^{n+1}-1}{(i-1)i!}$

那么,

$f(n)=\sum_{j=0}^n 2^j\ast j!\ast(a\ast b)(j)$

其中(a\ast b)(j)表示$a$和$b$的$0-j$项的卷积

模数为$998244353$,用$NTT$做一遍卷积即可,时间效率为$O(nlog_2n)$

注意事项

$b(0)=1,b(1)=n+1$

这两个要提前保存一下,因为用公式推的话会div 0

还有一个奇怪的问题我没有解决,具体看代码最后面吧

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
#define ll long long
ll MOD=998244353,g=3,inv[400010],f[400010],finv[400010];
int qpow(ll a,ll b){//快速幂
ll re=1;
while(b){
if(b&1) re=re*a%MOD;
a=a*a%MOD;b>>=1;
}
return re;
}
ll n,A[400010],B[400010],C[400010],r[400010],limit,cnt;
void ntt(ll *a,ll type){
int i,j,k,mid;ll y,w,wn;
for(i=0;i<limit;i++) if(i<r[i]) swap(a[i],a[r[i]]);
for(mid=1;mid<limit;mid<<=1){
wn=qpow((type==1)?g:inv[g],(MOD-1)/(mid<<1));
for(j=0;j<limit;j+=(mid<<1)){
w=1;
for(k=0;k<mid;k++,w=w*wn%MOD){
y=a[j+k+mid]*w%MOD;
a[j+k+mid]=(a[j+k]-y+MOD)%MOD;
a[j+k]=(a[j+k]+y)%MOD;
}
}
}
if(type==-1) for(i=0;i<limit;i++) a[i]=a[i]*inv[limit]%MOD;
}
void init(){
limit=1;cnt=0;int i;
while(limit<=(n<<1)) limit<<=1,cnt++;
for(i=0;i<limit;i++) r[i]=((r[i>>1]>>1)|((i&1)<<(cnt-1)));
inv[1]=A[0]=B[0]=f[1]=finv[1]=1;A[1]=MOD-1;B[1]=n+1;
for(i=2;i<=limit;i++) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
for(i=2;i<=limit;i++){
f[i]=f[i-1]*i%MOD;
finv[i]=finv[i-1]*inv[i]%MOD;
}
}
int main(){
n=read();
init();int i;
for(i=2;i<=n;i++) A[i]=(((i%2)?-1:1)*finv[i]+MOD)%MOD;
for(i=2;i<=n;i++) B[i]=((qpow(i,n+1)-1)*inv[i-1]%MOD*finv[i])%MOD;
ntt(A,1);ntt(B,1);
for(i=0;i<limit;i++) C[i]=A[i]*B[i]%MOD;
ntt(C,-1);
ll ans=0;
for(i=0;i<=n;i++) ans=(ans+qpow(2,i)*f[i]%MOD*C[i]%MOD)%MOD;
printf("%lld\n",(ans+1)%MOD);//这里不知道为什么,一定要加个1,我也没有搞明白
}

[HEOI2016/TJOI2016][bzoj4555] 求和 [斯特林数+NTT]的更多相关文章

  1. 【BZOJ4555】[TJOI&HEOI2016]求和 斯特林数+NTT

    Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i ...

  2. 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT

    [题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...

  3. BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】

    题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...

  4. 【BZOJ4555】【TJOI2016】【HEOI2016】求和 (第二类斯特林数+NTT卷积)

    Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: $$f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\tim ...

  5. bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...

  6. P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)

    传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...

  7. BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)

    题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...

  8. P4091-[HEOI2016/TJOI2016]求和【斯特林数,NTT】

    正题 题目链接:https://www.luogu.com.cn/problem/P4091 题目大意 给出\(n\),求 \[\sum_{i=0}^n\sum_{j=0}^i\begin{Bmatr ...

  9. 【bzoj5093】 [Lydsy1711月赛]图的价值 组合数+斯特林数+NTT

    Description "简单无向图"是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向 ...

随机推荐

  1. object-detection-crowdai数据处理

    import os file=os.listdir('/home/xingyuzhou/object-detection-crowdai') file.sort(key= lambda x:int(x ...

  2. let和const在es6中的异同点

    let和const这两个都是声明一个变量或函数的方法与var差不太多的效果 let的声明在for循环中,当你定义的是多少,最后你的值就是多少开始的,它只进行一次循环,不会像var那样去一遍一遍的去遍历 ...

  3. yum安装报错

    检查了好久才知道原来是 sudo nano /etc/sysconfig/network-scripts/ifcfg-ens33 下的DNS配错了,改好之后,sudo service network ...

  4. 50 道 CSS 基础面试题及答案

    1 介绍一下标准的CSS的盒子模型?与低版本IE的盒子模型有什么不同的? 标准盒子模型:宽度=内容的宽度(content)+ border + padding + margin 低版本IE盒子模型:宽 ...

  5. 42.VUE学习之--组件之子组件使用$on与$emit事件触发父组件实现购物车功能

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. Python9-MySQL-MySQL存储过程-视图-触发器-函数-day45

    视图:某个查询语句设置别名,日后方便使用 CREATE VIEW v1 as SELECT * FROM student WHERE sid >10 -创建: create view 视图名称 ...

  7. STM32串口——中断方式的一般配置方法

    #include "stm32f10x.h" /************************************************ 该程序讲解串口程序的一般配置方法: ...

  8. Kubernetes master服务定制编译docker镜像

    前言 之前部署了Kubernetes 1.13.0,发现master服务的启动方式与1.10.4版本有所区别,kube-apiserver.kube-controller-manager和kube-s ...

  9. Android 完美解决bundle实现页面跳转并保留之前数据+传值

    1.前言 前言: 昨天碰到了一个问题,我想实现页面跳转,采用了Bundle之后,再回到原来的页面,发现数据也没有了, 而且一直报错,网上查找了很多资料,发现要用一个startActivityForRe ...

  10. 常用Style

    有些输入框什么的,字数限制什么的style,ceb为我们写好了.我感觉,每个app的style都是很有用的一个东西. <?xml version="1.0" encoding ...