题目链接

题意

给定一个无向图,\(n\)个点,\(m\)条边(\(n,m\leq 1e5\)).

重复如下操作:

选择相异的两点u,v满足从点u出发走三条边恰好能到达点v。在这样的u,v点对之间添一条边(如果已经存在则无需再次添加)。

问最多能添加多少条边。

我的思路

(是写给自己看的读者老爷可以跳过去的部分)

首先, 所有距离为奇数的点对之间都能添边。因为

3-1+3=5
5-1+3=7
5-1+5=9
7-1+3=9
7-1+5=11
7-1+7=13
9-1+3=11
9-1+5=13
...

其次,如果距离为\(2\)的两点之间还有一条边,那么好像能够添成一个完全图……

然后就不会写了(卒

结论

如果该图为二分图,则最多能在所有黑点和白点之间加边;

如果不为二分图,则能加成一个完全图。

证明

官方题解

假设在\(s\)和\(t\)之间存在一条长度为奇数的路径,也就是说对于某个奇数\(k\),存在一个点的序列\(s=v_0,v_1,...,v_k=t\)(\(v_i\)和\(v_{i+1}\)相邻)。

如果\(k=1\),那么\(s\)和\(t\)之间本身就有一条边。如果\(k\geq 3\),通过在\(v_{k-3}\)和\(v_k\)之间加边,我们得到了一条\(s\)和\(t\)之间长度为\(k-2\)的路径。通过重复这个操作,我们可以一直减少\(s\)和\(t\)之间路径的长度最后在\(s\)和\(t\)之间加一条边。

这表示了奇数长路径的重要性,以及二分图性质的重要性。

Case 1. 不是二分图

不是二分图意味着存奇数长度的环,不妨设点\(v\)为环中的一点。因为图是连通图,所以对于任意的点对\((s,t)\),总有一条路径\(s\rightarrow v\rightarrow t\). 如果路径长度为偶数,则可通过加上点\(v\)处的奇环使得路径长度为奇数。

因此,在任意两点间都能找到一条奇数长度的路径,故可以将图加成一个完全图。所以答案为\(N(N-1)/2-M\).

Case 2. 是二分图

这种情况下,可以将点染成黑点和白点,每条边连接着一个白点和一个黑点。考虑任意的黑点和白点,因为图是连通图,所以黑点\(b\)和白点\(w\)之间存在着一条路径,并且显然路经长为奇数。因此,可以在\(b\)和\(w\)之间加边。另一方面,在同种颜色的点之间绝对无法加边。

故答案为\(BW-M\),\(B\)为白点个数,\(W\)为黑点个数。

具体写法

二分图的充要条件:所有回路长度均为偶数

法一:\(dfs\)

模拟染色看是否一个顶点会染到不同的颜色

法二(很新颖):并查集

具体解释见noip 2010 关押罪犯这道题的并查集做法

Code

Ver. 1 dfs

#include <bits/stdc++.h>
#define maxn 100010
using namespace std;
typedef long long LL;
struct Edge {
int to, ne;
Edge(int _to=0, int _ne=0): to(_to), ne(_ne) {}
}edge[maxn*2];
int tot, ne[maxn];
void add(int u, int v) {
edge[tot] = Edge(v, ne[u]);
ne[u] = tot++;
}
int n, m, c[maxn];
void dfs(int u, int col) {
c[u] = col;
for (int i = ne[u]; ~i; i = edge[i].ne) {
int v = edge[i].to;
if (c[v] == -1) dfs(v, !col);
if (c[v] != !col) { printf("%lld\n", 1LL*n*(n-1)/2-m); exit(0); }
}
}
int main() {
scanf("%d%d", &n, &m);
memset(c, -1, sizeof(c));
memset(ne, -1, sizeof(ne));
for (int i = 0; i < m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
}
dfs(1, 0);
int b=0, w=0;
for (int i = 1; i <= n; ++i) if (c[i]) ++b; else ++w;
printf("%lld\n", 1LL*b*w-m);
return 0;
}

Ver. 2 并查集

#include <bits/stdc++.h>
#define maxn 200010
using namespace std;
typedef long long LL;
int fa[maxn], sz[maxn];
int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
bool same(int u, int v) { return find(u) == find(v); }
void unionn(int x, int y) {
x = find(x), y = find(y);
if (sz[x] > sz[y]) swap(x, y);
fa[x] = y; sz[y] += sz[x];
}
int main() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= (n<<1); ++i) fa[i] = i;
for (int i = 0; i < m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
unionn(u, n+v);
unionn(n+u, v);
}
for (int i = 1; i <= n; ++i) if (same(i, n+i)) { printf("%lld\n", 1LL*n*(n-1)/2-m); return 0; }
int b = 1, w = 0;
for (int i = 2; i <= n; ++i) if (same(1, i)) ++b; else ++w;
printf("%lld\n", 1LL * b * w - m);
return 0;
}

Atcoder CODE FESTIVAL 2017 qual B C - 3 Steps 二分图的更多相关文章

  1. [AtCoder Code Festival 2017 QualB C/At3574] 3 Steps - 二分图染色,结论

    给你一个n个点m条边的无向图,进行以下操作 如果存在两个点u和v,使得从u走三步能恰好到达v,那么在u和v之间连接一条边 重复这个操作直到不能再连接新的边,问最后有多少条边? n, m <= 1 ...

  2. CODE FESTIVAL 2017 qual B C - 3 Steps【二分图】

    CODE FESTIVAL 2017 qual B C - 3 Steps 题意:给定一个n个结点m条边的无向图,若两点间走三步可以到,那么两点间可以直接连一条边,已经有边的不能连,问一共最多能连多少 ...

  3. Atcoder CODE FESTIVAL 2017 qual B D - 101 to 010 dp

    题目链接 题意 对于一个\(01\)串,如果其中存在子串\(101\),则可以将它变成\(010\). 问最多能进行多少次这样的操作. 思路 官方题解 转化 倒过来考虑. 考虑,最终得到的串中的\(' ...

  4. 题解【AtCoder - CODE FESTIVAL 2017 qual B - D - 101 to 010】

    题目:https://atcoder.jp/contests/code-festival-2017-qualb/tasks/code_festival_2017_qualb_d 题意:给一个 01 串 ...

  5. 【题解】Popping Balls AtCoder Code Festival 2017 qual B E 组合计数

    蒟蒻__stdcall终于更新博客辣~ 一下午+一晚上=一道计数题QAQ 为什么计数题都这么玄学啊QAQ Prelude 题目链接:这里是传送门= ̄ω ̄= 下面我将分几个步骤讲一下这个题的做法,大家不 ...

  6. atcoder/CODE FESTIVAL 2017 qual B/B(dfs染色判断是否为二分图)

    题目链接:http://code-festival-2017-qualb.contest.atcoder.jp/tasks/code_festival_2017_qualb_c 题意:给出一个含 n ...

  7. Atcoder CODE FESTIVAL 2017 qual C D - Yet Another Palindrome Partitioning 回文串划分

    题目链接 题意 给定一个字符串(长度\(\leq 2e5\)),将其划分成尽量少的段,使得每段内重新排列后可以成为一个回文串. 题解 分析 每段内重新排列后是一个回文串\(\rightarrow\)该 ...

  8. Atcoder CODE FESTIVAL 2017 qual C C - Inserting 'x' 回文串

    题目链接 题意 给定字符串\(s\),可以在其中任意位置插入字符\(x\). 问能否得到一个回文串,若能,需插入多少个\(x\). 思路 首先统计出现次数为奇数的字符\(cnt\). \(cnt\ge ...

  9. Atcoder CODE FESTIVAL 2017 qual B E - Popping Balls 组合计数

    题目链接 题意 \(A+B\)个球排成一行,左边\(A\)个为红球,右边\(B\)个为蓝球. 最开始可以选择两个数\(s,t\),每次操作可以取左起第\(1\)或\(s\)或\(t\)个球.问有多少种 ...

随机推荐

  1. MATLAB编程技巧

    [摘要] MATLAB是一种科学计算语言,和C.Fortran等高级语言相类似,能方便的实现程序控制.以下介绍一点matlab编程的技巧. 嵌套计算 程序执行的速度取决于调用的子程序的个数和算法实现. ...

  2. 【线段树 扫描线 二维数点】loj#6276. 果树

    路径计数转成二维数点很妙啊 题目描述 NiroBC 姐姐是个活泼的少女,她十分喜欢爬树,而她家门口正好有一棵果树,正好满足了她爬树的需求. 这颗果树有 $N$ 个节点,标号 $1 \ldots N$ ...

  3. Python pip 使用国内镜像

    ## 推荐源```https://mirrors.aliyun.com/pypi/simple/ 阿里镜像,速度快.稳定https://pypi.douban.com/simple/ 豆瓣镜像```# ...

  4. python导出开发环境

    1.导出开发环境的依赖包 本地开发完后,再把代码给别人之前,需要 pip freeze > pip123.txt 2.其他环境安装依赖包 pip install -r pip123.txt 其他 ...

  5. 《零基础入门学习Python》【第一版】视频课后答案第002讲

    测试题答案: 0. 什么是BIF?BIF 就是 Built-in Functions,内置函数.为了方便程序员快速编写脚本程序(脚本就是要编程速度快快快!!!),Python 提供了非常丰富的内置函数 ...

  6. CF1029C Maximal Intersection

    https://www.luogu.org/problem/show?pid=CF1029C #include<bits/stdc++.h> using namespace std ; # ...

  7. MySQL使用yum安装

    1.下载mysql的repo源 $ wget http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm 2.安装mysql-comm ...

  8. lwqq

    源码安装lwqq 加密保存密码 发送截图

  9. HDU 4812 D Tree 树分治

    题意: 给出一棵树,每个节点上有个权值.要找到一对字典序最小的点对\((u, v)(u < v)\),使得路径\(u \to v\)上所有节点权值的乘积模\(10^6 + 3\)的值为\(k\) ...

  10. CodeForces 500E New Year Domino

    题意: 从左到右排列着\(n\)个多米诺骨牌,它们分别站在\(x\)轴上的位置\(p_i\)上且高度为\(l_i\). 当第\(i\)个多米诺骨牌向右倒下时,如果\(p_i < p_j \leq ...