题目大意:

有边权点权的树,动态修改点权

每次修改后求带权重心x (\(minimize\) \(S=\sum_i val[i]*dist[x][i]\))

分析:

从暴力找突破口:

对于边x,y,设长度为len,切断后x半边树权值和为\(w_1\),y半边树为\(w_2\)

若从重心从x转到到y,则\(S+w_1*len-w_2*len\)

y比x优当且仅当\(w_2>w_1\)

设当前根为root,若root的一儿子x,满足\(w_x>w_{root}-w_x\),则x更优,且可以证明\(w_x>\frac {w_{root}} 2\),即不会存在第二个儿子y也比root优

做法:

暴力做法深度无保证,但\(w_x>w_{root}-w_x\)可以确定答案在x子树

我们用点分治树保证深度

新的问题:点分治树怎么求w

对于边x,y,设x半边树中所有点到x距离为\(d_1\),y半边树中所有点到y距离为\(d_2\)

所有点到x距离为\(d_1+d_2+w_2*len\)

所有点到y距离为\(d_1+d_2+w_1*len\)

可以了啊,这就是动态点分治模板了

询问复杂度\(nlog^2n\)

后来信息队一位善于创新的大神想到了nlogn的方法

x为rt,y为点分儿子时

x在上则两边权值和分别为w(y)和w(root)-w(y)

y在上则两边权值和分别为w(root)-w(x)+w(y)和w(x)-w(y)

乍一看非常正确,用rmq求个lca就可以O(1)判上下,超简便维护

但如果如图 :



兜来兜去的图发现bug多多

吸取经验

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
using namespace std;
typedef long long LL;
const int M=100007;
const int N=M*20*2;
inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-')f=0;
for(;isdigit(c);c=getchar())x=x*10+c-48;
return f?x:-x;
} int n,m; int g[M],te;
struct edge{
int y,next;
LL d;
}e[M<<1];
void addedge(int x,int y,LL d){
e[++te].y=y;
e[te].d=d;
e[te].next=g[x];
g[x]=te;
} int fir[M],td;
struct down{
int y;//点分儿子
int son;//亲儿子
int next;
}dw[M];
void adddw(int x,int y,int son){
dw[++td].y=y;
dw[td].son=son;
dw[td].next=fir[x];
fir[x]=td;
} int hd[M],tu;
struct uppp{
int all,sub,next;
LL dis;
}up[N];
void addup(int x,int all,int sub,LL dis){
up[++tu].all=all;
up[tu].sub=sub;
up[tu].dis=dis;
up[tu].next=hd[x];
hd[x]=tu;
} struct node{
LL sum,val;
}a[M<<1];
int idrt,idsub,nw; int sz[M],vis[M];
int mi,size,rt,root; void getsz(int x,int fa){
sz[x]=1;
int p,y;
for(p=g[x];p;p=e[p].next)
if(!vis[y=e[p].y]&&y!=fa){
getsz(y,x);
sz[x]+=sz[y];
}
} void getrt(int x,int fa){
int f,p,y;
f=size-sz[x];
for(p=g[x];p;p=e[p].next)
if(!vis[y=e[p].y]&&y!=fa){
getrt(y,x);
f=max(f,sz[y]);
}
if(f<mi) mi=f,rt=x;
} void dfs(int x,int fa,LL dis){
addup(x,idrt,idsub,dis);
int p,y;
for(p=g[x];p;p=e[p].next)
if(!vis[y=e[p].y]&&y!=fa){
dfs(y,x,dis+e[p].d);
}
} void work(int frm,int drt){
getsz(frm,0);
mi=size=sz[frm];
getrt(frm,0);
int x=rt,p,y;
vis[x]=1;
idrt=++nw;
addup(x,idrt,-1,0);
if(drt) adddw(drt,x,frm);
else root=x;
for(p=g[x];p;p=e[p].next)
if(!vis[y=e[p].y]){
idsub=++nw;
dfs(y,x,e[p].d);
}
for(p=g[x];p;p=e[p].next)
if(!vis[y=e[p].y]) work(y,x);
} void update(int x,LL y){
int p;
for(p=hd[x];p;p=up[p].next){
a[up[p].all].val+=y;
a[up[p].all].sum+=y*up[p].dis;
if(up[p].sub!=-1){
a[up[p].sub].val+=y;
a[up[p].sub].sum+=y*up[p].dis;
}
}
} LL get(int x){
LL res=0;
int p;
for(p=hd[x];p;p=up[p].next){
res+=a[up[p].all].sum;
res+=a[up[p].all].val*up[p].dis;
if(up[p].sub!=-1){
res-=a[up[p].sub].sum;
res-=a[up[p].sub].val*up[p].dis;
}
}
return res;
} int anst;
void find(int x){
int p,y,bb=1;
for(p=fir[x];p;p=dw[p].next)
if(get(x)>=get(dw[p].son)){
bb=0;
find(dw[p].y);
break;
}
if(bb) anst=x;
} int main(){
int i,x,y,z;
n=rd();m=rd();
for(i=1;i<n;i++){
x=rd(),y=rd(),z=rd();
addedge(x,y,z);
addedge(y,x,z);
}
work(1,0);
for(i=1;i<=m;i++){
x=rd(),y=rd();
update(x,y);
find(root);
printf("%lld\n",get(anst));
}
return 0;
}

bzoj 3924 幻想乡战略游戏的更多相关文章

  1. bzoj 3924 幻想乡战略游戏 —— 动态点分治

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3924 参考了博客:https://blog.csdn.net/qq_34564984/art ...

  2. bzoj3924 [Zjoi2015]幻想乡战略游戏 点分树,动态点分

    [BZOJ3924][Zjoi2015]幻想乡战略游戏 Description 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网 ...

  3. 【BZOJ3924】幻想乡战略游戏(动态点分治)

    [BZOJ3924]幻想乡战略游戏(动态点分治) 题面 权限题...(穷死我了) 洛谷 题解 考虑不修改 发现一个贪心的做法 假设当前放在当前位置 如果它有一个子树的兵的总数大于总数的一半 那么,放到 ...

  4. LOJ2135 「ZJOI2015」幻想乡战略游戏

    题意 题目描述 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网游厂商把游戏的地图越做越大,以至于幽香一眼根本看不过来,更别说和 ...

  5. LOJ #2135. 「ZJOI2015」幻想乡战略游戏

    #2135. 「ZJOI2015」幻想乡战略游戏 链接 分析: 动态点分治,求加权重心,带修改. 考虑如果知道了一个点s,如何求答案,那么首先可以点分治的思想,求每个联通块内所有点到分治中心距离和,然 ...

  6. 洛谷 P3345 [ZJOI2015]幻想乡战略游戏 解题报告

    P3345 [ZJOI2015]幻想乡战略游戏 题目描述 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网游厂商把游戏的地图越做 ...

  7. [ZJOI2015]幻想乡战略游戏——动态点分治

    [ZJOI2015]幻想乡战略游戏 带修改下,边点都带权的重心 随着变动的过程中,一些子树内的点经过会经过一些公共边.考虑能不能对这样的子树一起统计. 把树上贡献分块. 考虑点分治算法 不妨先把题目简 ...

  8. BZOJ3924 ZJOI2015 幻想乡战略游戏 【动态点分治】

    BZOJ3924 ZJOI2015 幻想乡战略游戏 Description 傲娇少女幽香正在玩一个非常有趣的战略类游戏,本来这个游戏的地图其实还不算太大,幽香还能管得过来,但是不知道为什么现在的网游厂 ...

  9. AC日记——[ZJOI2015]幻想乡战略游戏 洛谷 P3345

    [ZJOI2015]幻想乡战略游戏 思路: 树剖暴力转移: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 1 ...

随机推荐

  1. linux程序安装及包管理

    程序包的封装类型: RPM软件包:扩展名为“.rpm”,使用rpm命令安装. DEB软件包:扩展名为“.deb”,使用DPKG包管理器. 源代码软件安装:程序员开发完成的原始代码,一般制作成“.tar ...

  2. javaweb基础(9)_Servlet生成验证码图片

    一.BufferedImage类介绍 生成验证码图片主要用到了一个BufferedImage类,如下:

  3. shell脚本,awk利用NF来计算文本显示的行数。

    解释: 1.awk 'NF{a++;print a,$0;next}1' file4 首先判断NF是否存在值,第一行第二行第三行第四行都存在,进行执行后面的输出,输出后碰到next后,就结束了后面的操 ...

  4. Java--equals和 == 的比较和equals()、HashCode()的重写

    一. equals和 == 的比较 1.== 运算符 ① == 如果比较的是基本数据类型,则比较的是值. ② == 如果比较的是引用数据类型,则比较的是地址值. 2.equals ①它属于java.l ...

  5. jquery.imgpreload.min.js插件实现页面图片预加载

    页面分享地址: http://wenku.baidu.com/link?url=_-G8miwbgDmEj6miyFtjit1duJggBCJmFjR2jky_G1VftD9eS9kwGOlFWAOR ...

  6. 【mysql】mysql 备份脚本

    #! /bin/bash   HOST=localhost USER=root PASSWORD=password DATE_STR=$(date '+%F--%T') ERROR_LOG=/usr/ ...

  7. Yii2.0学习--目录结构

    目录结构: 创建一个控制器: <?php /** * Created by Haima. * Author:Haima * QQ:228654416 * Date: 2018/8/23 * Ti ...

  8. $(MAKE) , make命令

    make 定义了很多默认变量,像常用的命令或者是命令选项之类的,什么CC啊,CFLAGS啊之类.$(MAKE)就是预设的 make 这个命令的名称(或者路径).make -p 可以查看所有预定义的变量 ...

  9. JAVA-基础(二) java.lang

    1.String类提供了许多从String对象中截取字符的方法 1.1 char charAt(int where) 1.2 void getChars(int sourceStart, int so ...

  10. luogu2951 noip2017 小凯的疑惑

    在考场上我们可以打表发现规律是 $ ab-a-b $ .下面给出证明(看的网上的). 若有正数 $ x $ 不能被 $ a $ , $ b $ 组合出,假设 $ a>b $ ,则存在 \[ x= ...