Codechef Black Nodes in Subgraphs(树型背包)
题目意思就是在一棵树中所有点标记为两种颜色(黑和白)
然后询问是否存在大小为X恰好有Y个黑点的连通块
这题我们可以用树型背包的方法
设$f[i][j][0]$为以$i$为根的子树中大小为$j$的连通块的黑点数目的最小值,该连通块必须经过$i$
$f[i][j][1]$为以$i$为根的子树中大小为$j$的连通块的黑点数目的最大值,该连通块必须经过$i$
那么转移的时候有
$f[x][i + j][0] = min(f[x][i + j][0], f[x][i][0] + f[u][j][0]);$
$f[x][i + j][1] = max(f[x][i + j][1], f[x][i][1] + f[u][j][1]);$
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) const int N = 5010;
int f[N][N][2], sz[N];
vector <int> v[N];
int T, n, q;
int c[N], F[N], G[N]; void dfs(int x, int fa){
sz[x] = 1;
if (c[x]) f[x][1][0] = f[x][1][1] = 1;
else f[x][1][0] = f[x][1][1] = 0; for (auto u : v[x]){
if (u == fa) continue;
dfs(u, x);
dec(i, sz[x], 1){
rep(j, 1, sz[u]){
f[x][i + j][0] = min(f[x][i + j][0], f[x][i][0] + f[u][j][0]);
f[x][i + j][1] = max(f[x][i + j][1], f[x][i][1] + f[u][j][1]);
}
} sz[x] += sz[u];
} rep(i, 1, sz[x]){
F[i] = min(F[i], f[x][i][0]);
G[i] = max(G[i], f[x][i][1]);
}
} int main(){ scanf("%d", &T);
while (T--){
scanf("%d%d", &n, &q);
rep(i, 0, n) v[i].clear();
memset(sz, 0, sizeof sz);
rep(i, 0, n) rep(j, 0, n) f[i][j][0] = 1 << 27, f[i][j][1] = 0;
rep(i, 0, n) F[i] = 1 << 27, G[i] = 0; rep(i, 1, n - 1){
int x, y;
scanf("%d%d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
} rep(i, 1, n) scanf("%d", c + i);
dfs(1, 0); for (; q--; ){
int x, y;
scanf("%d%d", &x, &y);
puts(F[x] <= y && G[x] >= y ? "Yes" : "No");
}
} return 0; }
Codechef Black Nodes in Subgraphs(树型背包)的更多相关文章
- HDU 1561:The more, The Better(有依赖的树型背包)
http://acm.hdu.edu.cn/showproblem.php?pid=1561 题意:有n个点,容量为m,每个点有一个价值,还给出n条边,代表选第i个点之前必须先选ai,问最多的价值能取 ...
- JS树型菜单
本树型菜单主要实现功能有:基本的树型菜单,可勾选进行多选项操作. 本树型菜单适合最初级的学者学习,涉及内容不难,下面看代码. 首先看View的代码,第一个<div>用来定义树显示的位置和i ...
- POJ 3398 Perfect Service(树型动态规划,最小支配集)
POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...
- 路径字符串数据转化为树型层级对象,path to json tree
由于项目中使用了react 及 ant-design ,在使用tree树型控件时,需要 类似下面的数据, const treeData = [{ title: '0-0', key: '0-0', c ...
- 【XSY1905】【XSY2761】新访问计划 二分 树型DP
题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...
- 【POJ 2486】 Apple Tree(树型dp)
[POJ 2486] Apple Tree(树型dp) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8981 Acce ...
- 初学树型dp
树型DP DFS的回溯是树形DP的重点以及核心,当回溯结束后,root的子树已经被遍历完并处理完了.这便是树形DP的最重要的特点 自己认为应该注意的点 好多人都说在更新当前节点时,它的儿子结点都给更新 ...
- ASP.NET Aries 入门开发教程8:树型列表及自定义右键菜单
前言: 前面几篇重点都在讲普通列表的相关操作. 本篇主要讲树型列表的操作. 框架在设计时,已经把树型列表和普通列表全面统一了操作,用法几乎是一致的. 下面介绍一些差距化的内容: 1:树型列表绑定: v ...
- Rafy 领域实体框架 - 树型实体功能(自关联表)
在 Rafy 领域实体框架中,对自关联的实体结构做了特殊的处理,下面对这一功能进行讲解. 场景 在开发数据库应用程序时,往往会遇到自关联表的场景.例如,分类信息.组织架构中的部门.文件夹信息等,都 ...
随机推荐
- OAuth认证协议中的HMACSHA1加密算法
<?php function hmacsha1($key,$data) { $blocksize=64; $hashfunc='sha1'; if (strlen($key)>$block ...
- leetcode-23-DynamicProgramming-1
357. Count Numbers with Unique Digits 解题思路: 用arr[i]存放长度为i时,各位互不相同的数字的个数,所以arr[1]=10,arr[2]=9*9.(第一位要 ...
- CF 510b Fox And Two Dots
Fox Ciel is playing a mobile puzzle game called "Two Dots". The basic levels are played on ...
- (转)JVM各种内存溢出是否产生dump
对于java的内存溢出,如果配置-XX:+HeapDumpOnOutOfMemoryError,很明确的知道堆内存溢出时会生成dump文件.但永久代内存溢出不明确是否会生成,今天来做一个实验: 永久代 ...
- ReportViewer部分使用总结
最近winform上使用ReportViewer做报表,因为之前没弄过,所以遇到了很多问题,现在总结一下. 一.运行环境 .net环境:4.0 开发工具:vs2010 二.开发步骤 第一步,在winf ...
- luogu2740 [USACO4.2]草地排水Drainage Ditches 最大流EK
练一下最大流 #include <iostream> #include <cstring> #include <cstdio> #include <queue ...
- selenium - Js处理滚动条操作
# 11.Js处理滚动条操作 driver.execute_script('arguments[0].scrollIntoView();',target) target 为find_element_b ...
- C++程序在Windows平台上各种定位内存泄漏的方法,并对比了它们的优缺点
一.前言 在Linux平台上有valgrind可以非常方便的帮助我们定位内存泄漏,因为Linux在开发领域的使用场景大多是跑服务器,再加上它的开源属性,相对而言,处理问题容易形成“统一”的标准.而在W ...
- java环境配置classpath和path变量的作用及设置方法
1.path:指定cmd中命令执行文件所在的路径.比如javac.java两个可执行文件在jdk的bin目录下,如果path值含有这个bin目录,在cmd下执行这两个命令的时候就会到path指定的目录 ...
- equals()和hashCode()方法在集合类set中的使用
Object的方法 equals()和hashCode() 是用来判断两个对象是否相等.基础类型判断是否相等时,使用“==”来判断,按java的说话,“==”当用来判断是基础类型是判断内容的,而引用对 ...