题目链接

  唉我个ZZ……

  首先考虑到异或是可以每一位分开算的

  好的以后再碰见位运算题我一定先往按位开车上想

  然后设f[i]为从i点出发到终点是1的概率

  高斯消元解方程组即可。

  

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<bitset>
#define maxn 200
#define maxm 50020
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} inline int calc(int a,int b){ return (b>>a)&; } struct Edge{
int next,to,val,dis;
}edge[maxm*];
int head[maxn],num;
inline void add(int from,int to,int val){
edge[++num]=(Edge){head[from],to,val,};
head[from]=num;
} double s[maxn][maxn]; double dl[maxn];
double ans[maxn]; void gauss(int n){
for(int i=;i<=n;++i){
int now=i;
for(int j=now;j<=n;++j)
if(fabs(s[j][i])>fabs(s[now][i])) now=j;
if(now!=i) swap(s[i],s[now]);
double div=s[i][i];
for(int j=i;j<=n+;++j) s[i][j]/=div;
for(int j=i+;j<=n;++j){
double ret=s[j][i];
for(int k=i;k<=n+;++k){
s[j][k]-=ret*s[i][k];
}
}
}
ans[n]=s[n][n+];
for(int i=n-;i;--i){
double now=;
for(int j=i+;j<=n;++j) now+=ans[j]*s[i][j];
ans[i]=s[i][n+]-now;
}
} int main(){
int n=read(),m=read();
for(int i=;i<=m;++i){
int from=read(),to=read(),val=read();
dl[from]++; add(from,to,val);
if(from!=to){
dl[to]++;
add(to,from,val);
}
}
double Ans=;
for(int i=;i<;++i){
memset(s,,sizeof(s));
for(int j=;j<=n;++j) s[j][j]=;
for(int j=;j<=num;++j) edge[j].dis=calc(i,edge[j].val);
for(int j=;j<n;++j)
for(int k=head[j];k;k=edge[k].next){
int to=edge[k].to;
if(edge[k].dis){
s[j][to]+=1.0/dl[j]; s[j][n+]+=1.0/dl[j];
}
else s[j][to]-=1.0/dl[j];
}
//for(int j=1;j<=n;++j,printf("\n"))
// for(int k=1;k<=n+1;++k) printf("%.3lf ",s[j][k]);
gauss(n);
//printf("\n");
Ans+=ans[]*(<<i);
}
printf("%.3lf",Ans);
return ;
}

【Luogu】P3211XOR和路径(高斯消元)的更多相关文章

  1. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  2. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  3. BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算

    BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...

  4. 【BZOJ2337】XOR和路径(高斯消元)

    题目链接 大意 给出\(N\)个点,\(M\)条边的一张图,其中每条边都有一个非负整数边权. 一个人从1号点出发,在与该点相连的边中等概率的选择一条游走,直到走到\(N\)号点. 问:将这条路径上的边 ...

  5. BZOJ2337:[HNOI2011]XOR和路径(高斯消元)

    Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...

  6. bzoj2337 XOR和路径——高斯消元

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2337 异或就一位一位考虑: x为到n的概率,解方程组即可: 考虑了n就各种蜜汁错误,所以索性 ...

  7. BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)

    解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...

  8. P3211-[HNOI2011]XOR和路径【高斯消元】

    正题 题目链接:https://www.luogu.com.cn/problem/P3211 题目大意 一个\(n\)个点\(m\)条边的无向图,从\(1\)到\(n\)随机游走.求期望路径异或和. ...

  9. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

随机推荐

  1. Intel 快速存储蓝屏

    今天电脑蓝屏,DPC Watchdog Violation 很烦.开bluescreen说是NT内核的问题 开windbg说是Intel快速存储的问题,顺手卸载快速存储 卸载前 卸载后 另外我看Int ...

  2. CF Gym 100187B A Lot of Joy (古典概型)

    题意:给两个一样的只含有26个小写字母的字符串,然后两个分别做一下排列,问如果对应位置的字母相等那么就愉悦值就加一,问愉悦值的期望是多少? 题解:只考虑两个序列相对的位置,那么就相当于固定一个位置,另 ...

  3. 如何从Ubuntu 16.04 LTS升级到Ubuntu 18.04 LTS

    可以说非常简单(假设过程顺利!!) 您只需打开Software&Update,进入"Updates"选项卡,然后从“有新版本时通知我”下拉菜单中选择“适用长期支持版”选项. ...

  4. .vue公共组件裁减导航

    场景: 有一个公共头部和底部,vue搭建的框架,在app.vue里写的公共方法,首页是个登录页面,不需要公共部分,在这基础上进行公共部分的显示隐藏. 即注册页.登录页.404页面都不要导航 代码: ( ...

  5. Mysql command line

    show databasename; use databasename; show tables; desc tablename;

  6. k8s1.13.0二进制部署-flannel网络(二)

    Flannel容器集群网络部署 Overlay Network:覆盖网络,在基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路连接起来.VXLAN:将源数据包封装到UDP中,并使用基础网 ...

  7. c#和Java中的多态

    多态:让一个对象表现出多种类型,写出通用的代码,最大限度的屏蔽各个子类之间的差异性. c#举例: 将父类的方法标记为虚方法 ,使用关键字 virtual,这个函数可以被子类重新写一个遍. //真的鸭子 ...

  8. JQuery EasyUI学习记录(三)

    1.jQuery EasyUI messager使用方式 1.1 alert方法 $(function(){ //1.alert方法---提示框 $.messager.alert("标题&q ...

  9. java,根据输入的月和日,计算出是本年的第几天。

    package study01; import java.util.Scanner; public class TestDay { /* * 输入2017年的月和日:month=?,day=? 输出输 ...

  10. Codevs1033 蚯蚓的游戏

    题目描述 Description 在一块梯形田地上,一群蚯蚓在做收集食物游戏.蚯蚓们把梯形田地上的食物堆积整理如下: a(1,1)  a(1,2)…a(1,m) a(2,1)  a(2,2)  a(2 ...