1:贝叶斯网络的定义和性质

一个贝叶斯网络定义包括一个有向无环图(DAG)和一个条件概率表集合。DAG中每一个节点表示一个随机变量,可以是可直接观测变量或隐藏变量,而有向边表示随机变量间的条件依赖;条件概率表中的每一个元素对应DAG中唯一的节点,存储此节点对于其所有直接前驱节点的联合条件概率。

贝叶斯网络有一条极为重要的性质,就是我们断言每一个节点在其直接前驱节点的值制定后,这个节点条件独立于其所有非直接前驱前辈节点。

这个性质很类似Markov过程。其实,贝叶斯网络可以看做是Markov链的非线性扩展。这条特性的重要意义在于明确了贝叶斯网络可以方便计算联合概率分布。一般情况先,多变量非独立联合条件概率分布有如下求取公式:

而在贝叶斯网络中,由于存在前述性质,任意随机变量组合的联合条件概率分布被化简成

其中Parents表示xi的直接前驱节点的联合,概率值可以从相应条件概率表中查到。

贝叶斯网络比朴素贝叶斯更复杂,而想构造和训练出一个好的贝叶斯网络更是异常艰难。但是贝叶斯网络是模拟人的认知思维推理模式,用一组条件概率函数以及有向无环图对不确定性的因果推理关系建模,因此其具有更高的实用价值。

2:贝叶斯网络的构造及学习

构造与训练贝叶斯网络分为以下两步:

1、确定随机变量间的拓扑关系,形成DAG。这一步通常需要领域专家完成,而想要建立一个好的拓扑结构,通常需要不断迭代和改进才可以。

2、训练贝叶斯网络。这一步也就是要完成条件概率表的构造,如果每个随机变量的值都是可以直接观察的,像我们上面的例子,那么这一步的训练是直观的,方法类似于朴素贝叶斯分类。但是通常贝叶斯网络的中存在隐藏变量节点,那么训练方法就是比较复杂,例如使用梯度下降法。

3:应用和举例

贝叶斯网络作为一种不确定性的因果推理模型,其应用范围非常广,在医疗诊断、信息检索、电子技术与工业工程等诸多方面发挥重要作用,而与其相关的一些问题也是近来的热点研究课题。例如,Google就在诸多服务中使用了贝叶斯网络。

就使用方法来说,贝叶斯网络主要用于概率推理及决策,具体来说,就是在信息不完备的情况下通过可以观察随机变量推断不可观察的随机变量,并且不可观察随机变量可以多于以一个,一般初期将不可观察变量置为随机值,然后进行概率推理。下面举一个例子。

举例:SNS社区中不真实账号检测的例子,我们的模型中存在四个随机变量:账号真实性R,头像真实性H,日志密度L,好友密度F。其中H,L,F是可以观察到的值,而我们最关心的R是无法直接观察的。这个问题就划归为通过H,L,F的观察值对R进行概率推理。推理过程可以如下表示:

1、使用观察值实例化H,L和F,把随机值赋给R。

2、计算。其中相应概率值可以查条件概率表。

由于上述例子只有一个未知随机变量,所以不用迭代。更一般得,使用贝叶斯网络进行推理的步骤可如下描述:

      1、对所有可观察随机变量节点用观察值实例化;对不可观察节点实例化为随机值。

      2、对DAG进行遍历,对每一个不可观察节点y,计算,其中wi表示除y以外的其它所有节点,a为正规化因子,sj表示y的第j个子节点。

      3、使用第三步计算出的各个y作为未知节点的新值进行实例化,重复第二步,直到结果充分收敛。

      4、将收敛结果作为推断值。

转载来自:http://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 张洋

下面是补充:

4:其他贝叶斯网络推理算法

Bayesian 网络分类算法的更多相关文章

  1. 算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)

    算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification) 0.写在前面的话 我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比 ...

  2. 分类算法之朴素贝叶斯分类(Naive Bayesian classification)

    分类算法之朴素贝叶斯分类(Naive Bayesian classification) 0.写在前面的话 我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感.而每次 ...

  3. (ZT)算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)

    https://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html 0.写在前面的话 我个人一直很喜欢算 ...

  4. 分类算法之朴素贝叶斯分类(Naive Bayesian classification)

    1.1.摘要 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义.然后,介绍贝叶斯分类算法的基 ...

  5. 分类算法之贝叶斯(Bayes)分类器

    摘要:旁听了清华大学王建勇老师的 数据挖掘:理论与算法 的课,讲的还是挺细的,好记性不如烂笔头,在此记录自己的学习内容,方便以后复习.   一:贝叶斯分类器简介 1)贝叶斯分类器是一种基于统计的分类器 ...

  6. (ZT)算法杂货铺——分类算法之决策树(Decision tree)

    https://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html 3.1.摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分 ...

  7. fastText文本分类算法

    1.概述 FastText 文本分类算法是有Facebook AI Research 提出的一种简单的模型.实验表明一般情况下,FastText 算法能获得和深度模型相同的精度,但是计算时间却要远远小 ...

  8. 各常用分类算法的优缺点总结:DT/ANN/KNN/SVM/GA/Bayes/Adaboosting/Rocchio

    1决策树(Decision Trees)的优缺点 决策树的优点: 一. 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义. 二. 对于决策树,数据的准备往往是简单或者是不必要的. ...

  9. Bayesian Personalized Ranking 算法解析及Python实现

    1. Learning to Rank 1.1 什么是排序算法 为什么google搜索 ”idiot“ 后,会出现特朗普的照片? “我们已经爬取和存储了数十亿的网页拷贝在我们相应的索引位置.因此,你输 ...

随机推荐

  1. 【转载】C#扫盲之:带你掌握C#的扩展方法、以及探讨扩展方法的本质、注意事项

    1.为什么需要扩展方法 .NET3.5给我们提供了扩展方法的概念,它的功能是在不修改要添加类型的原有结构时,允许你为类或结构添加新方法. 思考:那么究竟为什么需要扩展方法呢,为什么不直接修改原有类型呢 ...

  2. POCO类

    我认为POCO(简单传统CLR对象)重点应该是简单,不跟其他不相关的类进行关联关系或不相关的属性.<NHibernate 4 Beginner Guid>这本书有提到,应该是满足下面三个条 ...

  3. kubernetes资源调度之LimitRange

    系列目录 LimitRange从字面意义上来看就是对范围进行限制,实际上是对cpu和内存资源使用范围的限制 前面我们讲到过资源配额,资源配额是对整个名称空间的资源的总限制,是从整体上来限制的,而Lim ...

  4. 对JavaBean创建的一点改进

    在看了<Effective Java>Item2中对JavaBean的描述后,再结合Item1和Builder模式,遂想有没有其他方式避免JavaBean创建的线程安全问题呢? 以如下Ja ...

  5. linux的su和sudo(转载)

    来源:http://www.jb51.net/LINUXjishu/12713.html 一. 使用 su 命令临时切换用户身份 1.su 的适用条件和威力 su命令就是切换用户的工具,怎么理解呢?比 ...

  6. codeforces Looksery Cup 2015 H Degenerate Matrix

    The determinant of a matrix 2 × 2 is defined as follows: A matrix is called degenerate if its determ ...

  7. Java之运行时异常与编译时异常区别

    Java中用2种方法处理异常: 1.在发生异常的地方直接处理: 2.将异常抛给调用者,让调用者处理. Java异常可分为3种: (1)编译时异常:Java.lang.Exception (2)运行期异 ...

  8. ChannelHandler揭秘(Netty源码死磕5)

    精进篇:netty源码死磕5  揭开 ChannelHandler 的神秘面纱 目录 1. 前言 2. Handler在经典Reactor中的角色 3. Handler在Netty中的坐标位置 4. ...

  9. 一款很好的日程安排插件fullcalendar 非常适合OA等系统

    1.插件下载 http://arshaw.com/fullcalendar/download/ 2. <!DOCTYPE html> <meta http-equiv="C ...

  10. DIV+CSS常见问题的14条原因分析

    当你在一个浏览器里面做好,在其他浏览器里面却完全不是那么回事情.  很多时候,我们就只是去修补下,或者利用各个浏览器对代码支持的不一致,进行针对各个浏览器进行不同的定义.  其实浏览器的不兼容,我们往 ...