CodeForces 1110H. Modest Substrings
题目简述:给定$1 \leq l \leq r \leq 10^{800}$,求一个长度为$n \leq 2000$的数字串$s$,其含有最多的【好】子串。一个串$s$是【好】的,如果将其看做数字时无前导零且满足$l \leq s \leq r$。形式化的说,就是求
$$ \arg \max_{s \in \Sigma^n} \sum_{i=1}^n \sum_{j=i}^n [s[i] \neq 0 \land l \leq s[i \dots j] \leq r] , $$
其中$\Sigma = \{0,1,2,\dots, 9\}$。
解:code
Step 1. 用一类特殊的 正规/正则 语言(Regular Language)描述$l \leq x \leq r$
我们选择一类特殊的正规语言,其形如 $ L = d \Sigma^m $,其中$d \in \Sigma^+, m \in \mathbb{N}$。
观察:存在一组不相交的上述特殊的正规语言$L_1, L_2, \dots, L_k$,使得
$$ \bigcup_{i=1}^k L_i = \mathbb{N} \cap [l, r] $$
且$k = O(|\Sigma|(\log l+\log r))$。
这个结论我们不加证明,但给出两个例子以说明。
Example 1. $l = 12, r = 1234$。我们可取:
$$
\begin{aligned}
& 12, 13, 14, 15, 16, 17, 18, 19, \\
& 2\Sigma^1, 3\Sigma^1, \dots, 9\Sigma^1, \\
& 1\Sigma^2, 2\Sigma^2, \dots, 9\Sigma^2, \\
& 10\Sigma^2, 11\Sigma^2, \\
& 120\Sigma^1, 121\Sigma^1, 122\Sigma^1, \\
& 1230, 1231, 1232, 1233, 1234.
\end{aligned}
$$
Example 2. $l = 1234, r = 1456$。我们可取:
$$
\begin{aligned}
& 1234, 1235, 1236, 1237, 1238, 1239, \\
& 124\Sigma^1, 125\Sigma^1, \dots, 129\Sigma^1, \\
& 13\Sigma^2, \\
& 140\Sigma^1, 141\Sigma^1, 142\Sigma^1, 143\Sigma^1, 144\Sigma^1, \\
& 1450, 1451, 1452, 1453, 1454, 1455, 1456.
\end{aligned}
$$
Step 2:构建一组特殊正规语言的 AC自动机(Aho-Corasick Automaton)
我们可以把$L = d \Sigma^m$这类特殊的正规语言简记为$(d, m)$,分别称为$d$部分和$m$部分。对于$L_1, L_2, \dots, L_k$,其中$L_i = (d_i, m_i)$,我们构建包含单词$d_1, d_2, \dots, d_k$的AC自动机。值得一提的是,由于$L_i$的构造的局部特征,AC自动机的状态数是$O(|\Sigma|(\log l+\log r))$的。
注:AC自动机也是一类(确定)有限状态自动机((Deterministic) Finite-State Automaton),因此其也可描述成一个有限状态自动机,其状态集为$Q$,初始状态为$q_0 \in Q$,转移函数为$\delta: \Sigma \times Q \to Q$。
Step 3:动态规划
设$f[q][i]$表示:长度为$n$且满足$\delta(q_0, s[1\dots i]) = q$的那些数字串$s$中,$d$部分在$s[1\dots i]$内的$s$的【好】子串的最大个数。则
$$ f[q][i] = \max_{p \to q} \{ f[p][i-1] \}+g[q][n-i], $$
其中$p \to q$表示存在$a \in \Sigma$使得$\delta(p, a) = q$,$g[q][L]$表示$d$部分恰好在$q$处结束且$m$部分长度不超过$L$的正规语言个数,即
$$ g[q][L] = \sum_{i=1}^k [d_i \in \text{pre}(q) \land m_i \leq L], $$
其中$\text{pre}(q) = \{ q, \text{link}(q), \text{link}(\text{link}(q)), \dots, q_0 \}$表示$q$在失败树上的所有祖先,而$\text{link}(q)$表示$q$在AC自动机中的失败指针。
于是时间复杂度为$O(|\Sigma|^2 n(\log l+\log r))$,通过一些小优化可将时间复杂度降为$O(|\Sigma| n (\log l+\log r))$。
CodeForces 1110H. Modest Substrings的更多相关文章
- codeforces #271D Good Substrings
原题链接:http://codeforces.com/problemset/problem/271/D 题目原文: D. Good Substrings time limit per test 2 s ...
- Codeforces 316G3 Good Substrings 字符串 SAM
原文链接http://www.cnblogs.com/zhouzhendong/p/9010851.html 题目传送门 - Codeforces 316G3 题意 给定一个母串$s$,问母串$s$有 ...
- [CF1110H]Modest Substrings
description CodeForces 定义一个正整数\(x\)是合适的当且仅当\(l\le x\le r\),其中\(l,r\le 10^{800}\). 找到一个长度为\(n\)的数字串,使 ...
- CodeForces 550A Two Substrings(模拟)
[题目链接]click here~~ [题目大意]: You are given string s. Your task is to determine if the given string s ...
- Codeforces 271D - Good Substrings [字典树]
传送门 D. Good Substrings time limit per test 2 seconds memory limit per test 512 megabytes input stand ...
- Codeforces 1276F - Asterisk Substrings(SAM+线段树合并+虚树)
Codeforces 题面传送门 & 洛谷题面传送门 SAM hot tea %%%%%%% 首先我们显然可以将所有能够得到的字符串分成六类:\(\varnothing,\text{*},s, ...
- CF1110H Modest Substrings AC自动机、DP
传送门 如果\(r-l\)比较小,可以将所有满足条件的串扔进\(AC\)自动机然后在上面DP,从前往后确定字符串的每一位. 但是\(l,r \leq 10^{800}\)就十分不可行,所以需要优化这个 ...
- Codeforces.392E.Deleting Substrings(区间DP)
题目链接 \(Description\) \(Solution\) 合法的子序列只有三种情况:递增,递减,前半部分递增然后一直递减(下去了就不会再上去了)(当然还要都满足\(|a_{i+1}-a_i| ...
- @codeforces - 1276F@ Asterisk Substrings
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个包含 n 个小写字母的字符串 s,用 s 生成 n 个串 ...
随机推荐
- ffmpeg 视频教程 添加水印附源码
本文主要讲述如何利用Ffmpeg向视频文件 添加水印这一功能,文中最后会给出源代码下载地址以及视频 下载地址,视频除了讲述添加水印的基本原理以及代码实现,还提到了要注意的一些地方,因为直接运行 dem ...
- iOS开发:Toast for iPhone
iOS开发:Toast for iPhone 分享一个我写的类似于android的toast的提示框 主要特点: 1,支持屏幕Y轴任意位置显示,设置距离顶/底端距离 2,支持多行文本 3,支持设置 ...
- 认识Gulp
gulp详细入门教程:http://www.ydcss.com/archives/18 安装gulp 前提:已经安装node.js.npm $ npm install gulp --save-dev ...
- HashSet、LinkHashSet、TreeSet总结
HashSet:散列集,集合中的元素不允许重复,但是不要求顺序,输出的顺序和进入HashSet的顺序是没有关系的 LinkedHashSet :链表散列集,集合中的元素不允许重复,同时要求和进入Set ...
- inline-block的使用
inline-block是什么 inline和block是css中元素display属性的两个选项,而inline-block可以说是介于两者之间的属性值. inline使元素成为内联元素(inlin ...
- 关于erlang中的timer:tc/3
timer:tc/3对于统计函数运行时间是个很不错的函数, 截图timer:tc/1,tc/2,tc/3的API: 拿斐波那契数列入手做个讲解: -module(fib). -export([fib/ ...
- linux的su和sudo(转载)
来源:http://www.jb51.net/LINUXjishu/12713.html 一. 使用 su 命令临时切换用户身份 1.su 的适用条件和威力 su命令就是切换用户的工具,怎么理解呢?比 ...
- 数据结构基础之memset---有memset 抛出的int 和 char 之间的转换和字节对齐
今天晚上,在做滤波算法时,里面用到很多float 和int 以及char 之间的类型强制转换,后面滤波完发现图片有些区域块,有过度曝光的白光,我就跟踪,以为是char 字符数字数据溢出问题,加了0-2 ...
- 九度OJ 1091:棋盘游戏 (DP、BFS、DFS、剪枝)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1497 解决:406 题目描述: 有一个6*6的棋盘,每个棋盘上都有一个数值,现在又一个起始位置和终止位置,请找出一个从起始位置到终止位置代 ...
- Linux就该这么学--命令集合7(管道命令符)
1.管道命令符“|”的作用是将前一个命令的标准输出当作后一个命令的标准输入,格式为:“命令A|命令B”. 找出被限制登录用户的命令是:grep "/sbin/nologin" /e ...