HDU 4003 Find Metal Mineral (树形DP,经典)
题意:给定一棵树图,n个节点,有边权,要派k<11个机器人从节点s出发,遍历所有的点,每当1只机器人经过1条边时就会花费该边的边权,边是可重复走的。问遍历完所有点的最小花费?
思路:
非常经典,首先需要知道一点,才能往下推理。就是“如果在t点派c个机器人往孩子u,那么最多只有1个机器人能走会回来到t,否则花费总是不划算的”。
稍微证明一下:
(1)假设派1个机器人往u,逛一圈回到u的父亲t,花费v= 子树u的边权和*2 + e(t,u)*2。若机器人不要了,那花费肯定比v还要少。
(2)假设派2个机器人往u,若要2个机器人都回来,显然花费要比(1)要大。若仅要1个机器人回来,花费仍比“仅派1只机器人往u”要高。(可以试试画一棵有3层的树,头两层只有1个节点,第三层节点数随意即可,来模拟一下就知道结果了)
得到的结论是,要么只派c个机器人去孩子u,且1个都不要走回来(注:0<c<=k);要么派1个机器人出去,且遍历完子树u走回t。
这样已经很好解决了。枚举下点t的孩子数(组),再枚举点t可能获得的机器人数(容量),再枚举给这个孩子派的机器人数(物品)。
还有个初始化DP值的问题,因为每个孩子都是必须遍历的,而常规的分组背包是可选(至多选1件)或者不选物品的,那么可以先将“派1个机器人且回收1个机器人的DP值”丢进背包(保证了此容量下肯定有遍历过子树u),然后若有更好的状态再更新掉此容量。
用DP[t][0]表示“有1个机器人到达t遍历完子树再走回t”的花费。DP[t][i]表示“有i个机器人到达t且遍历完整棵子树t,且不要求回到t”的最小花费。
#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <map>
#include <vector>
#include <iostream>
#define pii pair<int,int>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int N=;
struct tower
{
int pri,pow;
}tow[N][]; struct node
{
int from,to,next;
node(){};
node(int from,int to,int next):from(from),to(to),next(next){};
}edge[N*]; int edge_cnt, head[N], cnt[N], dp[N][], n, m ;
void add_node(int from,int to)
{
edge[edge_cnt]=node(from, to, head[from]);
head[from]=edge_cnt++;
}
inline int cmp(tower a,tower b){return a.pri<b.pri;} void DFS(int t,int far)
{
node e;
int flag=;
for(int i=head[t]; i!=-; i=e.next)
{
e=edge[i];
if(e.to==far) continue;
DFS(e.to, t); for(int j=m; j>=; j-- ) //容量
{
dp[t][j]=min(dp[t][j], dp[e.to][]); //先装代价为0的,如果有更好的再代替掉。
for(int k=; k<=j; k++ ) //给此孩子k元,得到的最大攻击力。
dp[t][j]=max(dp[t][j], min(dp[t][j-k], dp[e.to][k]));
}
flag=; //标记是否叶子。
}
if(flag==) memset(dp[t], , sizeof(dp[t])); //叶子节点 //本节点的决策是“仅有1组的分组背包”模型: 必须且最多买1个。(不买就只能靠孩子来防御)
for(int j=m; j>=; j-- ) //容量
{
int k=;
for( ; k<cnt[t] && !tow[t][k].pri; k++ ) //不用钱的,只留1个power最大的.
if(tow[t][k-].pow > tow[t][k].pow)
swap(tow[t][k],tow[t][k-]); for( k-- ; k<cnt[t]; k++) //物品
{
if(j-tow[t][k].pri>=)
dp[t][j]=max(dp[t][j], dp[t][j-tow[t][k].pri] + tow[t][k].pow ); //可以直接挡
}
}
} int main()
{
freopen("input.txt", "r", stdin);
int t, a, b; cin>>t;
while(t--)
{
edge_cnt=;
memset(head, -, sizeof(head));
memset(dp, 0x3f, sizeof(dp)); //注意初始化 scanf("%d",&n);
for(int i=; i<n; i++) //无向图
{
scanf("%d%d",&a,&b);
add_node(a,b);
add_node(b,a);
} scanf("%d",&m); //钱。
for(int i=; i<=n; i++)
{
scanf("%d",&cnt[i]);
for(int j=; j<cnt[i]; j++)
scanf("%d%d", &tow[i][j].pri, &tow[i][j].pow);
sort(tow[i], tow[i]+cnt[i], cmp); //免费的排前面
}
DFS(, -);
printf("%d\n",dp[][m]);
}
return ;
}
AC代码
HDU 4003 Find Metal Mineral (树形DP,经典)的更多相关文章
- hdu 4003 Find Metal Mineral 树形DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4003 Humans have discovered a kind of new metal miner ...
- hdu 4003 Find Metal Mineral 树形dp ,*****
Find Metal Mineral Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Other ...
- HDU 4003 Find Metal Mineral(分组背包+树形DP)
题目链接 很棒的一个树形DP.学的太渣了. #include <cstdio> #include <string> #include <cstring> #incl ...
- HDU4003Find Metal Mineral[树形DP 分组背包]
Find Metal Mineral Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Other ...
- HDU4003 Find Metal Mineral 树形DP
Find Metal Mineral Problem Description Humans have discovered a kind of new metal mineral on Mars wh ...
- HDU-4003 Find Metal Mineral 树形DP (好题)
题意:给出n个点的一棵树,有k个机器人,机器人从根节点rt出发,问访问完整棵树(每个点至少访问一次)的最小代价(即所有机器人路程总和),机器人可以在任何点停下. 解法:这道题还是比较明显的能看出来是树 ...
- hdu4003Find Metal Mineral(树形DP)
4003 思维啊 dp[i][j]表示当前I节点停留了j个机器人 那么它与父亲的关系就有了 那条边就走了j遍 dp[i][j] = min(dp[i][j],dp[child][g]+dp[i][j- ...
- HDU 4003 Find Metal Mineral
这个题是POJ1849的加强版. 先说一个很重要的结论,下面两种方法都是从这个结论出发的. 一个人从起点遍历一颗树,如果最终要回到起点,走过的最小权值就是整棵树的权值的2倍. 而且K个人的情况也是如此 ...
- hdu 4514 并查集+树形dp
湫湫系列故事——设计风景线 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tot ...
随机推荐
- wannafly test D
题意: 给定n,m求满足: 1.a[i][j]互不相同,且有$1<=a[i][j]<=n*m$ 2.对于$a[i1][j1],a[i2][j2]$,如果有 $i1 \oplus j1 &g ...
- Eclipse用Runnable JAR file方式打jar包,并用该jar包进行二次开发
目录: 1.eclipse创建Java项目(带jar包的) 2. eclipse用Export的Runnable JAR file方式打jar包(带jar包的) 打jar包 1)class2json1 ...
- 【Linux学习】Linux文件系统4—Linux文件硬链接与软连接
Linux文件系统4-Linux文件硬链接与软连接 inode:索引节点 (连接文件)link 一.文件硬链接 1.Linux文件系统中,inode只相同的文件是硬链接文件 2.不同文件名,inode ...
- css 属性相关
css属性相关 宽和高 width属性可以为元素设置宽度, height属性可以为元素设置好高度 块级标签才能设置宽度,内联标签的宽度由内容来决定. 字体属性 文字字体 font-family 可以把 ...
- supervisor简明教程
一.supervisor是什么 Linux的后台进程运行有好几种方法,例如nohup,screen等,但是,如果是一个服务程序,要可靠地在后台运行,我们就需要把它做成daemon,最好还能监控进程状态 ...
- 线程通讯--BlockingQueue
Producer线程 package com.thread.communication.blockingqueue; import java.util.concurrent.BlockingQueue ...
- 一款基于Bootstrap的js分页插件bootstrap-paginator使用实例
Bootstrap Paginator是一款基于Bootstrap的js分页插件,功能很丰富.它提供了一系列的参数用来支持用户的定制,提供了公共的方法可随时获得插件状态的改变,以及事件来监听用户的动作 ...
- 无法序列化会话状态。请注意,当会话状态模式为“StateServer”或“SQLServer”时,不允许使用无法序列化的对象或 MarshalByRef 对象。
原文链接:http://blog.csdn.net/byondocean/article/details/7564502 session是工作在你的应用程序进程中的.asp.net进程.iis往往会在 ...
- lightoj1062【几何(二分)】
其实就应该想到,哪有那么简单让你直接搞出答案的几何题啊:(而且很有可能是二分? 题意: 有两个梯子,一个靠在左边墙上,一个靠在右边墙上,长度分别为 x 和 y,他们的交点距离地面高度是 c,求两个梯子 ...
- 如何实现一个无边框Form的移动和改变大小(一)
很多时候我们不希望使用Windows提供的窗体. 我们希望使用一个无边框的窗体,什么border,caption透明就行了. 下面我们来说下一些实现方法. 这个方法要求窗体自定义的border siz ...